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C b C it P t tCrab Cavity Prototype
• Model fabricated at DL 

and used to evaluate:and used to evaluate:
– Mode frequencies
– Cavity coupling
– HOM, LOM and SOM Qe 

and R/Q

• Modular design allowsModular design allows 
evaluation of:
– Up to 13 cells.

Including all mode– Including all mode 
couplers.



Protot pe Cell ShapePrototype Cell Shape
Th ll t h d• The cells are not squashed 
and are cylindrically 
symmetric.y

• Two small discs is inserted 
into each cell in order to 
polarise the cavitypolarise the cavity.



Pert rbation TheorPerturbation Theory
Slater’s theorem              

• Slater’s paper [[i]] states, in a cavity, the fractional change in frequency is 
proportional to the fractional change in stored energy. 

Uf ΔΔ

• This can be used to characterise a standing wave cavity by introducing a 
U
U

f
f Δ=Δ

g y y g
small perturbation to the cavity and observing the change in frequency as 
the perturbation is induced. The change in cavity energy by a 
perturbation to the electric field can be calculated to be equal to 
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• [i] L.C. Maier, J.C. Slater, Field Strength Measurements in Resonant Cavities, Journal of Applied Physics, 23 
(1), 1952



Non-Resonant Perturbation TechniqueNon Resonant Perturbation Technique
• A perturbing object 

placed within a cavity will
Frequency without bead:
3.98539GHzplaced within a cavity will 

change the resonant 
frequency of that 
structure proportionally 

2mm radius bead

Frequency with 
perturbing bead:
3.98554GHz
-> 150kHz frequency shift

p p y
to the field on the surface 
of the perturbing object.

B d
Coupler

Bead

offset

By pulling a bead through the

VNA

By pulling a bead through the 
cavity we can map the fields 
within the cavity as the 
frequency perturbation isVNA frequency perturbation is 
proportional to the fields at that 
position.



Different t pe of beadsDifferent type of beads
• Non-spherical beads can distinguish between• Non-spherical beads can distinguish between 

longitudinal and transverse field components.
•Dielectric
b d ll thbeads allow the
perturbation to
only affect the
electric fieldelectric field
and not the
magnetic field.

•Metal beads
are perturbed
by both fieldsby both fields.



Freq enc shift s Phase shiftFrequency shift vs. Phase shift
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However with large perturbations the frequency calculated from the 
phase shift can often be smaller than the actual frequency shift as the 
relation moves out of the linear region.



LOM meas rementsLOM measurements
Monopole modes can be measured 
by directly measuring the frequency 0.004

0.006

by directly measuring the frequency 
shift (or phase) by pulling a metallic 
circular bead along the cavity axis as 
the Ez field strongly dominates in this 
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Di l B d ll ltDipole Bead-pull results
• If we pull a 0 03• If we pull a

dielectric bead
along the axis we
can find the
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• We can then use

this to separate
the transverse E

f
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and B fields
perturbing a
metal bead. • Hence we can calculate the R/Q 

f P f k W l thfrom Panofsky Wenzel theorem.



Needle meas rementsNeedle measurements
• Alternatively we can use 

a metal needle to
Corrected phase1

a metal needle to 
perturb the cavity.
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• According to Pierce a needle 
will strongly perturb electricwill strongly perturb electric 
fields aligned with it and weakly 
perturb perpendicular electric 
fields and magnetic fields.fields and magnetic fields.

• The other fields will however 
cause small errors.



Higher Order ModesHigher Order Modes
• For the HOM’s• For the HOM s, 

things become 
more 
complicated.
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Wire Meas rements Techniq eWire Measurements Technique
• Technique employed extensively on X-band structures at SLAC.
• Bench measurement provides characterisation of:• Bench measurement provides characterisation of:

– mode frequencies
– kick factors

A pulse travelling 
along a wire has a

– loss factors

along a wire has a 
similar field profile 
to a relativistic 
bunch.

The wire can move 
off axis to induce 
dipole modes. 



Transmission Theory
A wire through a uniform reference tube 
can be regarded as a transmission line 

Transmission Theory

characterised by Ro , Lo and Co

A wire through the cavity under 
investigation is modelled with an 

The impedance Zll is large close to each
cavity mode One measures reflections of

g
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Impedance MatchingImpedance Matching
A conical broadband impedance 
transformer and a series of quarter 
wave resonators were used to provide a 
good match between the DUT and the 
RF source.

There is some disagreement in the 
community whether good matching is 
required or not so we erred on the side 
of cautionof caution



Pert rbation b the irePerturbation by the wire
The presence of the wire however perturbs the 
fields of the cavity and will shift the frequency and 
R/Q. This makes this technique only applicable to 
dipole, quadropole and higher azimuthal order 
modes.
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Wi M t T h iWire Measurements Technique
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Operating Mode MeasurementsOperating Mode Measurements
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Monopole modesMonopole modes
• The monopole modes resonant frequency was found toThe monopole modes resonant frequency was found to 

alter sizably as the wire was moved off-axis causing to 
cause errors in nearby dipole modes as the reference 
and DUT transmission will differand DUT transmission will differ.
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RepeatabilitRepeatability
• The measurements were repeated several times over 

l d i d t t i t bilit f thseveral days in order to ascertain repeatability of the 
measurements.

It is believed that due 1.20E+03 Z 21
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Res ltsResults



F ll S stem Protot peFull System Prototype

At present we have built and are measuringAt present we have built and are measuring 
the prototypes of the UK SOM coupler and 
power coupler and the SLAC HOM and LOM 
couplers to verify the full system.



Co pler Meas rementsCoupler Measurements
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Power Coupler Prototype 
M tMeasurements
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the codes.
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3 cell cavities were used to preserve field 
flatness.

There was some issues with metallisation of 
the window which have now been rectified.



Dipole modes damping by SOM 
lcoupler

The SOM coupler
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LOM Coupler Prototype external Q 
measurementsmeasurements
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HOM co plerHOM coupler
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Th HOM l i th tThe HOM coupler is the most 
complex of all 4 couplers and a 
large amount of time was spent 
analysing itanalysing it.

Modes up to 7.8 GHz were found. 
Modes not found assumed to flow 
out of the beam-pipes.



HOM Co plerHOM Coupler
The filter was made adjustable to 
investigate manufacturing errors
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A few LHC crab cavity 
simulations

G. Burt, R. Calaga



Short Range WakesShort Range Wakes
0.50 0.06

0.00

0.25

-60.00 -40.00 -20.00 0.00 20.00 40.00 60.00W
z 

(V
/p

C
)

-0 02

0.00

0.02

0.04

h 
C

ha
rg

e 
de

ns
ity

-0.50

-0.25

s (cm)

-0.06

-0.04

-0.02

B
un

chWz (V/pC)
bunch

ECHO 2D was used to 
calculate the longitudinal 
h t k i

1.00

1.50

0.04

0.06

si
ty

Wt (V/pC/m)
bunch

short range wakes in 
Rama’s design for the LHC 
cavity. The transverse wake -0.50

0.00

0.50

-60.00 -40.00 -20.00 0.00 20.00 40.00 60.00

W
t (

V
/p

C
/m

)

-0.02

0.00

0.02

Bu
nc

h 
ch

ar
ge

 D
en

was calculated analytically.
-1.50

-1.00

S (cm)
-0.06

-0.04

B



Dipole HOMsDipole HOMs
Then MAFIA’s 
2D eigensolver 
was used to 
look at the 10.000
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Beam pipe LOM co plerBeam-pipe LOM coupler
The damping of the two LOM’s wereThe damping of the two LOM s were 
investigated using a KEK-B style beam-pipe 
LOM coupler. The inner diameter was 10cm 
and the penetration was varied. This currently 
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LOM co pler modellingLOM coupler modelling
4mm

A LOM l b
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A LOM coupler can be 
coaxial hook type LOM 
coupler can get very 
low external Q’s.
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SOM Wa eg ide Co plerSOM Waveguide Coupler
A waveguide SOM coupler g p
was investigated and 
achieved a Qe of 4.5x103. 
The WG was positioned 40The WG was positioned 40 
mm from the cavity.

A scheme of a WG power coupler, two WG 
SOM/HOM l t ff t thSOM/HOM couplers cut-off to the 
fundamental and a beam-pipe, coaxial or 
WG LOM coupler on the other side could 
be a potential damping scheme Thebe a potential damping scheme. The 
power coupler would have to also extract 
the other mode in the 1st dipole pass-band.


