

Welcome LHC-CC08

Bob Palmer: Two-in-one magnet Crab crossing

Ilan Ben-Zvi Collider-Accelerator Department BNL

Introduction

- A word about BNL/C-AD SRF program
- Construction of a prototype LHC-CC working with Advanced Energy Systems
- Crab cavities -
 - A reality in KEK-B
 - broad applicability
 - A subject of intense interest (you are the proof!)
- Potential for synergism and collaboration

Goals of the Workshop

- Learn from the KEK experience
- Establish a roadmap for crab cavities at the LHC:
 - Define the timeline for crab cavities at the LHC
 - Detail the various steps
 - Estimate time scales
 - Define work packages and potential distribution of tasks among collaborating laboratories
- This roadmap will be presented in the summary

Decide the following:

- Global or local crabbing?
- What optics for the adopted scheme?
- What is the location of the cavities if global?
- What is required for a local scheme?
- Therefore, do we need an exotic cavity?
- At what frequency?

Decisions - continued

- Is there a workable small angle (local) strawman layout?
- What are the approximate D1 (and other magnet) upgrade requirements? (Table)
- Where does the AES prototype get installed?
- What are the engineering challenges?
- Questions which cannot be answered identify R&D areas to work on.

- In Nominal LHC we have available 5-10m in IP4, therefore only one cavity per beam to do global crab crossing for only one IP.
- We may start by building one cavity (per beam?) proof of principle, both for SRF & beam tests. Test at LHC circa 2010-2011.
- Are there other potential places for the test?
- What come next?

- Guide the discussions to cover the issues defined above.
- Please follow guidelines as described in Ram Calaga's email to the chairs (see backup slides)
- Summarize the findings and recommendations for the summary.

If you brave New York in February...

You must be really dedicated to

Welcome!

Backup slides

- 1. Optics & Integration (Oide)
 - a. Choice of Freq: 800 MHz (400 MHz)
 - b. How much free space is available both for global or local
 - c. Global or Local for Upgrade Phase I

- 2. Crab Cavity Noise Effects (Seryi)
 - a. Noise effects and simulation benchmarking status
 - b. Operational reality

- 3. Design, Fabrication & Processing (Padamsee)
 - a. Max achievable gradient in deflecting mode
 - b. Required length of the crab system (cavity cryostat etc..)
 - c. Do we need more than 2-cells (pros-cons)
 - d. How much polarization is needed (beam related, space related)
 - e. Optimum geometry and cavity aperture
 - f. Damping mechanisms (Effective + Robust)

- 4. Crab Cavities Around the World (Ben-Zvi)
 - a. Lessons to be learned from previous and ongoing projects
 - b. What components can be directly adapted for LHC system
 - c. Which components needs most R&D focus

- 5. Impedance Issues (Rimmer)
 - a. Cavity impedance and frequency choice
 - b. Cavity Aperture
 - c. HOM power and efficient extraction mechanisms
 - d. Thresholds for single and multi bunch effects

- 6. RF Control (McIntosh)
 - a. Input power requirements & Qext
 - b. Power handling capacity of the different couplers
 - c. Max. allowable phase jitter, feedback requirements
 - d. Type of power amplifier and related stability

- 7. Discussion Packages (Zimmermann & Calaga)
 - a. Main R&D steps and priorities
 - b. Distribution of work packages among the constituents
 - c. Rough time scales