## Crab Crossing: History and some Uses

- Linear collider motivation
- Crab Crossing
- Super-Disruption
- Crab-Super-Disruption



### The Linear Collider Problem

- If head on then 'debris' from the collisions will pass up the opposing linac
- Bending does not separate beams of opposite charge
- One MUST have a crossing angle 50 mrad easily 5 mrad with difficulty



## Loss of Luminosity



- 80% loss of luminosity even using septa
- 98% loss with desirable angle

## Crab Crossing (Ref 1)



- In their center of mass the bunches collide head on
- Luminosity is as for zero crossing angle

### Generation of Crab Walk



- The higher the frequency, the less the Voltage needed
- But if too high, harmonics required to keep bunch straight

# "Super Disruption" Another idea from the same time

I will assume round beams for simplicity

$$\mathcal{L} \propto n_{\text{bunches}} f_{\text{turns}} \frac{N_{\mu}^2}{\sigma_{\perp}^2} \qquad \Delta \nu \propto \frac{N_{\mu}}{\epsilon_{\perp}}$$

$$\mathcal{L} \propto P_{\text{circulating beam}} \Delta \nu \frac{1}{\beta^*}$$

So it is very desirable to lower  $\beta^*$ 

"Disruption" - the focusing effect from the opposing beam - is a poor man's way of lowering  $\beta^*$ 

## Disruption (Ref 3)

D defined (for round beams) by

$$D = \frac{\sigma_z}{f} = \frac{r_o N \sigma_z}{\gamma \sigma_{\parallel}^2} = \frac{r_o N \sigma_z}{\beta_* \epsilon_{\perp}}$$

remembering that

$$\Delta \nu = \frac{N}{4\pi \epsilon_{\perp}}$$

$$D = \Delta \nu \frac{4\pi \sigma_z}{\beta_*}$$

e.g. for  $\sigma_z/\beta^* = 0.2$  and D=10: luminosity gain = 2

With D>10 there are theoretically greater gains, but a severe kink instability requires impossible alignment tolerances

But D=10 and  $\sigma_z/\beta^*=$  0.2 corresponds to a  $\Delta\nu\approx 5$  ! OK for a linear collider, but not for a ring

# Original Super Disruption (Ref 2)













































































## Application to a ring collider

- ullet Cannot work in a ring collider because focus bunches are heavily disrupted ( $\Delta 
  u > 1$ ) and would be lost
- But plausible particle bunches could significantly focus a beam

#### Note:

- The focusing bunch does NOT need to have high energy
- It does NOT need to have very small emittance we want linear focusing
- It should have the opposite charge e.g. electrons for a protonproton collider
- The crab idea allows the focus beams to be in separate channels

## Crab-Super-Disruption



One needs two more electron lenses after the IP to match back into the ring. Not shown here for simplicity. But you get the idea.

### Conclusion

- Crab crossing was invented for linear colliders
- I never thought it would work in a ring
- Super-disruption was also invented for linear colliders
- I never thought it would work in a ring
- Perhaps I could be wrong twice
- Anyway, I wanted to say something you probably did not know

#### References

- 1. Crab Crossing: R.B.Palmer; Snowmass Proceedings p 631 (1988), and SLAC-PUB 4708 Dec 1988
- 2. Super Disruption: R.B.Palmer; SLAC-PUB 3688 (1985)
- 3. Linear Colliders: R.B.Palmer; Annual Rev. Nuclear Science (1990) 40: p529