FLASH Meeting

Results from tests of the new down-converter, and field detection scheme at FLASH'

- F.Ludwig, M.Hoffmann, K.Suchecki, C. Schmidt, C. Gerth, W.Jalmuzna / DESY,ELHEP

Content: 0 Motivation

- 1 Multi-channel VME receiver using active frontends
- 2 Beam stability measurements at FLASH

Phase noise budget at FLASH (Switched LO, single cavity)

• Phase noise measurements :

• Contributions to cavity field jitter :

Subsystem	Phase noise [dBc/Hz]	Residual jitter [fs]	Induced jitter [fs]
МО	see Fig.3	14.1	5.5
DWC (Frontend)	-147	1.8	1.8
DWC (ADC)	-135	5.8	5.8
MOD	-110	1.2	1.2

(Complete ADC module)

- High frequency noise is filtered by the cavity, but not drifts or 1/f-noise!
- Beam relevant frequency range [1Hz,100kHz]

Reducing noise for the display / Reducing noise on the beam

"Beam performance":

Increase SNR by

- Increasing input power
- Decreasing noise spectra density of the down-converter

"Display property for the operator":

Noise appears at the DWC output but not on the cavity field!

Multichannel Packaging and Preprocessing

Single channel receiver performance at FLASH

• Single channel stability results:

Short-term, bunch-to-bunch (800us):

$$\Delta A/A_{rms} = 0.015\%$$
, $\Delta \varphi_{rms} = 0.0092 \ deg$

Mid-term, pulse-to-pulse (10min):

$$\Delta A/A_{rms} = 0.016\%$$
, $\Delta \varphi_{rms} = 0.0147 \ deg$

Long-term, drifts (1hour):

$$\Delta A/A_{pkpk} = 0.09\%$$
, $\Delta \varphi_{pkpk} = 0.05 \text{ deg}$

$$\theta_A = 2e-3/^{\circ}C$$
, $\theta_P = 0.2^{\circ}/^{\circ}C$

• Shortterm stability 800us (bunch-to-bunch):

BW=27MHz BW=1MHz

• Midterm stability 10min (pulse-to-pulse):

BW=1MHz BW=1MHz

0.8595

Parameter:

- Readout bandwidth 1MHz
- VME active multi-channel receiver
- SIMCON DSP (14-Bit ADC)
- LO / IF leakage –72dB
- Crosstalk -67...-70dB

81 samples over 1 us

- → 1 IQ value
- → ~5 Hz through 10 minutes

Single channel receiver performance at FLASH

- Single channel receiver performance at FLASH:
 - Incl. LO-Generation phase noise

- Analog Receiver has 0.0052 deg [1kHz,10MHz].
- IF[9,54MHz] works also with a lowpass
- Powerful diagnostic using the CW modulation scheme!
- Drift calibration <100Hz is needed!
 (Injector door effect on LO) e.g. injected, reflected or LO or Beam-based feedbacks

Biased by MO reference:

Main Parameters Table

Parameter	Value				
Amplitude Noise	31dB (Input Noise Figure)				
Residual Phase Noise	1e-3° ().00kHz & Vec Sum)				
Linearity	+35dBm (Input Pip3)				
Temperature Sensitivity of Phase	???				
Cross-Talk	71-90 dB (7 Ch. Connected)				
Power Consumption	8W (1A@+6V/0.4A@-6V)				
Number of Channels per board	8				
Cost/Channel	150\$				

Summary of ACC1 beam stability at FLASH 09/07

• IQ sampling down-converter (250kHz):

• IF sampling down-converters (9,54MHz):

Reducing noise for the display / Reducing noise on the beam

"Beam performance":

Increase SNR by

- Increasing input power
- Decreasing noise spectra density of the down-converter

"Display property for the operator":

Noise appears at the DWC output but not on the cavity field!

 Automated beam-based calibration and fixed machine parameters

beam jiter induced by the LLRF

Sources of field perturbation

• Effective noise spectral densites for different tested down-converters :

$$S_R(f) = b_{r,0} + b_{r,-1} \cdot f^{-1}$$

 $S_A(f) = b_{a,0} + b_{a,-1} \cdot f^{-1}$

Detector 1 / FLASH:

- IQ Sampling 250kHz method
- Gibert-Mixer active AD8343
- ADC-boards (14-bit, 1MHz) + DSP System

Detector 2 / FLASH:

- IF Sampling 54MHz method
- Passive HMC483
- SIMCON 3.1, LT2207, 16-bit, 81MHz sampling ADC

	$b_0 [\mathrm{dBc}]$	b_{-1} [dBc]
Actuator	-110	-90
Detector 1	-135	-120
Detector 2	-150	-105
Detector 3	-150	-130

Simulation results

Residual cavity

amplitude jitter

Beam phase

Beam energy spread :

Beam timing jitter:

Energy spread :

$$\left(\frac{\sigma_E}{E}\right)^2 \cos^2 \varphi_b = \frac{1}{2} (1 + \cos 2\varphi_b) \left(\frac{\sigma_A}{A}\right)^2$$

 $+\frac{1}{2}(1-\cos(2\varphi_b))\sigma_{\varphi}^2 + \frac{1}{4}(3\cos(2\varphi_b)-1)\sigma_{\varphi}^4$

Residual cavity phase jitter

Arrival timing spread:

$$t_{j,\text{out}}^2 \approx \left(\frac{R_{56}}{c_0} \frac{\sigma_A}{A}\right)^2 + \left(\frac{C-1}{C}\right)^2 \left(\frac{\sigma_{\varphi}}{c_0 k_{\text{rf}}}\right)^2 + \left(\frac{1}{C}\right)^2 t_{j,\text{in}}^2$$

No phase noise contribution

SR-BC2

Sources of field perturbation

• Beam energy spread :

• Beam timing jitter:

- Actuator Down-converter amplitude noise phase noise (Mainly caused by ADC)
- 1/f-noise and white noise level of the down-converter have to be improved with low latency
- For off-crest operation, phase noise is much more critical than amplitude noise.

Actual multichannel down-converter

• Compromise between noise and linearity:

- **^**
- Second amplification determines performance
- Expected down-converter performance from baseband measurements:

$$(\Delta A/A)\approx 0.2E-4\approx 0.2\delta U_{\it XFEL} \mbox{, (Cavity filtered)}$$

$$\Delta \! \! f = 100kHz \mbox{,}$$

Static influence of the linearity and noise from the down-converter

• Modified DWC performance :

- Noise degreases by a factor of 3 to <0.001% of the DWC (without IQ Driver!) within the cavity effective noise bandwidth.
- Linearity degrades from 0.5%toapprox. 5%

- Automated accurate waveguide adjustment (Indictation from off-crest LO generation limitation).
- Beam stability in dependence of gradient and phase.

• Pulse-to-Pulse Beam Stability :

- 0.008% on-crest beam stability is achieved.
- The DWCs non-linearity has no influence on beam stability for fixed machine parameters.
- DWC is not the limiting factor.

Correlation measurements between vectorsum and beam fluctuations

DESY

• ACC1 vectorsum vs. SR-MCP camera :

• Feedback gain dependent correlation :

- \wedge
- No noise correlation between dE/E vs.VS found ???
 (May caused by MO noise, MCP measures all noise VS measures residual).
- Comparison with theoritcal expected correlations.
- Correlation studies for microphonics and MO, LO.

Reducing noise for the display / Reducing noise on the beam

DESY

"Beam performance":

Increase SNR by

- Increasing input power
- Decreasing noise spectra density of the down-converter

Effektive noise bandwidth for the beam jiter induced by the LLRF

"Display property for the operator":

Noise appears at the DWC output but not on the cavity field!

- Imrove monitor resolution (SR 3E-5 (fine), MCP ?, BAM ?)
- Automated beam-based calibration (ok)
- Accurate waveguide adjustment
- Passive High IP3 mixers (1.3GHz, 3.9GHz)
- 1/f-noise and drifts from LO, IQ Driver
- Drift calibration (LO, injected or reflected)
- ADC limitation -> Multiple IF (KEK)-> bypass the ADC/P/DAC
- Further test at FLASH:
- ACC1 RF-phase, gradient sweep
- DWC, LO characterization biased by MO
- DWC, LO lab characterization biased by MO

Summary & Outlook

- The amplitude beam stability requirements for FLASH are nearly fulfilled:
 0.008% using the IQ sampling scheme operating at 250kHz and
 0.022% using the IF sampling scheme operating at 9MHz and 54MHz (may be better)
- Possible noise sources of pulse-to-pulse energy jitter are:
 - 1/f-noise and drifts from the Receiver and LO-generation [1kHz, 100kHz] (amplitude and phase noise)
- ADC noise (to be shown in lab characterization)
- VS calibration and DWC non-linearity influence is minor (to be investigated off-crest).
- Accuracy of waveguide phases for all cavities, MO amplitude noise
- The IF sampling scheme offers a powerful error diagnostic tool.
- LO generation is much more complicated and requires a drift calibration scheme.

low noise...->...high line arity... -> ...low drift... -> ... absolute accuracy

Thanks for your attention!

^{*} Linearity requirement for multi-cell cavity structures

End of Discussion Backup Slides

Non-Linearity of the down-converter

• Effect on the vectrorsum:

Number of cavities: 32, Predetuning: 50 Hz,

Detuning-Spread: 11 Hz, 28 Hz

Amp. cal. error: 0.005, Phase cal. err.: 0.5°

In presence of a vectorsum calibration error microphnics induces additional noise.

Courtesy of A.Brandt / DESY

Sources of field perturbation

Calibration, Selfcalibration and Linearization

This is what we measure at the end with I,Q detection. For a calibration this phase noise caused by the reference must be zero!

n,m th phase noise spectrum from fs-laser laser pulse with rep. rate Δf :

Operation of mixer (down-converter):

calibration!

$$\begin{split} \varphi_{\rm IF}(t) &= \varphi_{\rm RF}(t) - \varphi_{\rm LO}(t), \ f_{\rm IF} = f_{\rm RF} - f_{\rm LO} \\ S_{\varphi,\rm IF}(f) &= S_{\varphi,\rm RF}(f) + S_{\varphi,\rm LO}(f) - 2\gamma_{\rm RF,\rm LO}(f) \sqrt{S_{\varphi,\rm RF}(f)} \sqrt{S_{\varphi,\rm LO}(f)} \\ \gamma_{\rm RF,\rm LO}(f) &= I \quad \text{(RF, LO must come from the same source for a calibration)} \\ \frac{\sqrt{S_{\varphi,\rm RF}(f)}}{\sqrt{S_{\varphi,\rm LO}(f)}} &= \frac{n}{m} = \frac{f_{\rm RF}}{f_{\rm LO}}, \quad S_{\varphi,\rm IF}(f) = \left(\sqrt{S_{\varphi,\rm RF}(f)} - \sqrt{S_{\varphi,\rm LO}(f)}\right)^2 \end{split}$$

For the actual DWC structure a calibration is only possible in the baseband with $f_{IF} = 0$. The drifts caused by the reference are reduced by a factor of f_{IF}/f_{IO} .

- Good calibration requires: (for the mixer structure)
 - Good calibration requires: $S_{\varphi,RF}(f) = S_{\varphi,LO}(f)$, $\gamma_{RFLO}(f) = I$, $f_{RF} \neq f_{LO}$ (I think impossible to fulfill)
 - Calibration in baseband, measurement using intermediate frequency.
 - Extend the DWC structure (e.g. analyze also sum frequency noise...).
 - Accept the calibration error: Reduce drift from MO (push mixing idea with inwave).
 - Decrease the indermediate frequency.
 - Compare calibration drift errors vs. DWC drift.

Noise characterization of the LLRF System (TTF2)

• Noise from IQ-driver modul:

$$\delta U_{IQ} \approx 3.5 \times \delta U_{XFEL}$$

- Merge fiberlink+DAC+VM,
- Merge DWC+ADC+fiberlink
- Low-noise design down to 10mHz for long term stability!

Choice of modulation scheme

• ADC equilvalent noise spectral density:

$$e_n = \frac{V_{FS,pp}}{\sqrt{8}} 10^{\frac{SNR(f_s,\varepsilon)}{20}} \sqrt{\frac{2}{f_s}}$$

Typ	Bits	$f_{s,max}$	SNR [dBFS]	SFDR [dBc]	$V_{\rm FS}$	\mathbf{t}_{j}
		[MSPS]	$70\mathrm{MHz}$	$70\mathrm{MHz}$	$[V_{pp}]$	[fs]
LTC2207	16	105	77.5	90	2.25	80
LTC2208	16	130	77.5	90	2.25	70
AD6645	14	80	73.5	87	2.2	100
AD9461	16	130	77	84	3.4	60
AD9446	16	100	79	89	3.2	60
ADS5546	14	190	73.5	87	2.0	150
	•	•	•	'	•	

A lot of available ADCs have roughtly the same performance.

• Bunch-Arrival Monitor :

200

arrival time bunch #2 [fs]

200

400

600

500

800

600

Courtesy of F.Loehl / DESY

Beam stability measurements

What is most important for a beam stability significantly lower than 0.01%?

Direct Sampling of RF signals

• Key features :

- simplifies RF frontend (no downconversion)
- amplifier & attenuator to match to the input range of the ADC
- undersampling inevitable
 → BW < fs/2

• SNR:

- amplifier noise
- ADC quantization noise
- clock jitter

• Linearity:

- amplifier linearity (compression)
- ADC linearity

Courtesy of U.Mavric / FNAL

End of Discussion

Multichannel Packaging and Preprocessing

RF inputs (8 channels):

+14dBm input power / channel

Multichannel Packaging and Preprocessing

Multichannel Receiver frontend + fast ADC board for prototype testing : LO distribution

(DWC2.0, BAM1.0)

- Shielded subsections

- Strong AGND to RF GND connections

- Frontend mixer and ADC easily changeable

(Applications:

Bunch-arrival-monitors, Beam-position-monitors, Beam-based feedback, LLRF passive-active)

ADC:

(LT2207,16Bit, 105Msps)

Analog frontend:

(based on High IP3 Mixer HMC483)

IQ detection + fiber interface board:

(ACB 2.0)

- 1GBit/s Optolink,

- 1GBit/s Ethernet (Rocket IO Interface approx. 350ns latency) (approx 400ns delay)

Fiber interface to SIMCON DSP

-FPGA pre-processing (board 130ns latency) (approx. 64MB)

Blockdiagramm and Performance Tests

• Simplified block diagram of a down-converter :

Sample frequency:

$$f_s = rac{N}{M} \cdot f_{IF}$$
 $\stackrel{N, M: ext{integers}}{\underset{N ext{ samples in } M ext{ IF periods}}{}$

Phase advance:

$$\Delta \varphi = \omega_{IF} T_s = 2\pi \frac{T_s}{T_{IF}} = 2\pi \frac{M}{N}$$

$$I = \frac{2}{N} \cdot \sum_{i=0}^{N-1} y_i \cdot \sin(i \cdot \Delta \varphi)$$
$$Q = \frac{2}{N} \cdot \sum_{i=0}^{N-1} y_i \cdot \cos(i \cdot \Delta \varphi)$$

Single channel passive IF sampling down-converter

• Laboratory performance :

	Att.	Mixer	BPF	Trafo	ADC	System
NF [dB]	1	11	3	1	35	41
IIP3 [dBm]	48	36	35	35	/	36
G [dB]	-1	-11	-3	9	/	-6

• LO and CLK Generation setup :

• Shortterm stability:

Shortterm stability (1MHz Bandwith):

$$\theta_A = 3E-3$$
, $\theta_P = 3m^\circ$
Drift stability:
 $\theta_A = 3e-3/^\circ C$, $\theta_P = 0.2^\circ /^\circ C$

Receiver performance at FLASH

• FLASH injector:

• Vectorsum stability with closed control loop at ACC1:

Instability caused by 8/9pi mode

Down-converter biased by Cavity pickup:

Gain

	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8
$\Delta A/A \ [10^{-4}]$								
$\Delta \varphi \text{ [deg]}$	0.028	0.038	0.035	0.033	0.025	0.032	0.022	0.032
$\Delta A/A \ [10^{-4}]$								
$\Delta \varphi \text{ [deg]}$	0.016	0.019	0.018	0.021	0.016	0.020	0.015	0.019

- Down-converter fulfill XFEL specs
 - Spurius signals are below 80dBc
 - Cavity 8/9pi mode clearly measurable

IQ sampling scheme in practice

• Actual LLRF control system using a switched LO-signal :

high-power vektormodulator cavity 1300 1300 1300 klystron Masteroscillator 1300 1300 f_{LO} 1300 1300 LO-signal down-+250kHz converter +250kHz 250kHz digital part LO-Driver rect-signal DAC DSP ADC Asymmetries cause DAC ripples in I,Q

 Phase and amplitude detection of the cavity field vector :

Rotation of the LO-signal in four 90° steps, using a 250kHz squared LO-Signal.

• Down-converter output IF-signal :

Bandwidth for transforming 250kHz squared pulses :

$$\Delta f \approx 10MHz$$

but required regulation bandwidth is only:

$$\Delta f \approx 1MHz$$

Gun and ACC1

ACC2, ACC3, ACC4 & ACC5

IQ sampling in practice at FLASH

• Performance of the 250kHz IQ Sampling scheme at FLASH:

IQ sampling multi-channel down-converter at FLASH

8-channels from cavity probe :

 $P_{RF} \approx [-40 \, dBm \,, -10 \, dBm \,]$

8-channels to ADC-Board:

$$\sqrt{S_U} \approx 70 \, nV / \sqrt{Hz}$$

LO-Input:

$$P_{LO} \approx -5dBm$$

Automated drift calibration

• Why is this needed ? :

A drift compensation is needed to compensate drifts and 1/f-noise from

- Cavity pickup cables (4 module)5 $f_S m^{-1} K^{-1}$, $\pm 125 f_S K^{-1}$ ($\pm 25 m$), $\Delta T \approx 1 K$
- Downconverter (mixer) $\theta_A = 2e-3/^{\circ}C$, $\theta_P = 0.2^{\circ}/^{\circ}C$ (Injector)
- LO generation (dividers, amplifiers, filters)
- ADC CLK generation (timing system, less critical)
- Perfect separation to Synch.System to have a robust machine operation.

• Off beam phase calibration :

• Injection of the reference signal:

Reflection at the cavity :

Calibration of the LO-signal except the mixer :

Driftcompensation / Linearization

DESY

- Compenate drifts from down-converter LO, CLK Generation
- Separation from Synchronization System •

• Linearization using the probe cavity decay:

Quit good exponential decay
Possible hardware linearization of DWC's

Off beam phase calibration :

Calibration of the down-converter phase using a local rf-reference.

• Phase and Amplitude jitter contributions to the cavity field jitter for different subsystems:

