Results from the B-Factories

J. Michael Roney University of Victoria (BaBar Collaboration)

Lepton Photon 2013 San Francisco 28 June 2013

e+e- B-factories

have a very broad scientific program

- CP & T-violation
- Precision CKM measurements
- Rare decays

- Searches for Processes beyond the SM
- Hadron production in Initial State Radiation
- Spectroscopy (see e.g. Yuan Changzheng presentation Tues. pm)

..... can only scratch the surface in this sampling of results

Delivered luminosities far beyond design...

Integrated luminosity of B factories

Integrated luminosity of B factories

CKM Matrix

In SM weak charged transitions mix quarks of different generations - encoded in unitary CKM matrix:

$$\begin{pmatrix} d' & s' & b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

Unitarity **>** 4 independent parameters one is the complex phase and sole source of CP violation in SM

In the Wolfenstein parameterisation:

$$\mathbf{V}_{CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$
$$\lambda^2 = \frac{|V_{us}|^2}{|V_{ud}|^2 + |V_{us}|^2}; \quad A^2\lambda^4 = \frac{|V_{cb}|^2}{|V_{ud}|^2 + |V_{us}|^2}; \quad \overline{\rho} + i\overline{\eta} = -\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}$$
Results from the B-Factories

CKM Matrix

Physics beyond the SM signaled by breakdown of unitarity of CKM matrix: non-closure of the 'unitarity triangle' $B^0 \rightarrow \pi^- \pi^+, \rho^+ \rho^-$

•Make as many precision measurements as possible that overconstrain the four CKM parameters (A, λ , ρ , η)

•New Physics would be revealed in discrepancies between measurements

•Generally requires non-perturbative QCD input to convert measurements to a SM CKM interpretation (but exceptions where single weak phase dominate as in J/ϕ Ks)

Results from the B-Factories

Belle and BABAR designed to measure and test CKM framework

• Sum of angles: $\alpha + \beta + \gamma = (177 \pm 9)^{\circ}$

 $\alpha = (88.5 \pm 4.5)^{\circ}$ $\beta = (21.4 \pm 0.8)^{\circ}$ $\gamma = (67 \pm 8)^{\circ}$

Sides of triangle from semileptonic B decays:
 |V_{cb}| (Lattice QCD for FF)
 |V_{cb}| (HF Sum Rules for FF)

$$|V_{cb}|_{excl}^{LQCD} = (39.04 \pm 0.55_{exp} \pm 0.74_{th}) \times 10^{-3}$$

$$|V_{cb}|_{incl} = (42.01 \pm 0.46_{exp} \pm 0.59_{th}) \times 10^{-3}$$

$$|V_{cb}|_{average} = (40.93 \pm 0.57_{exp} \pm 0.94_{th}) \times 10^{-3}$$

$$|V_{cb}|_{average} = (42.01 \pm 0.46_{exp} \pm 0.59_{th}) \times 10^{-3}$$

$$|V_{cb}|_{average} = (42.01 \pm 0.46_{exp} \pm 0.59_{th}) \times 10^{-3}$$

$$|V_{cb}|_{average} = (41.67 \pm 0.38_{exp} \pm 0.50_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.26 \pm 0.16_{exp} \pm 0.24_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

Belle and BABAR designed to measure and test CKM framework

• Sum of angles: $\alpha + \beta + \gamma = (177 \pm 9)^{\circ}$

 $\alpha = (88.5 \pm 4.5)^{\circ}$ $\beta = (21.4 \pm 0.8)^{\circ}$ $\gamma = (67 \pm 8)^{\circ}$

Sides of triangle from semileptonic B decays:
 |V_{cb}| (Lattice QCD for FF)
 |V_{cb}| (HF Sum Rules for FF)

 $|V_{cb}|_{excl}^{HFSR} = (40.93 \pm 0.57_{exp} \pm 0.94_{th}) \times 10^{-3}$ $|V_{cb}|_{evcl}^{LQCD} = (39.04 \pm 0.55_{exp} \pm 0.74_{th}) \times 10^{-3}$ $|V_{cb}|_{incl} = (42.01 \pm 0.46_{exp} \pm 0.59_{th}) \times 10^{-3}$ $|V_{cb}|_{\rm incl} = (42.01 \pm 0.46_{\rm exp} \pm 0.59_{\rm th}) \times 10^{-3}$ $|V_{cb}|_{\text{average}} = (41.67 \pm 0.38_{\text{exp}} \pm 0.50_{\text{th}}) \times 10^{-3}$ $V_{cb}|_{\rm average} = (40.81 \pm 0.90_{\rm exp} \pm 1.14_{\rm th}) \times 10^{-3}$ NB: errors scaled by 2.4 0.7 $|V_{ub}|_{excl}^{LQCD} = (3.26 \pm 0.16_{exp} \pm 0.24_{th}) \times 10^{-3}$ 0.6 0.5 sin 2_B $|V_{ub}|_{\text{incl}} = (4.42 \pm 0.19_{\text{exp}} \pm 0.15_{\text{th}}) \times 10^{-3}$ CP violating (excl. at CL > 0.95 0.4 $V_{ub}|_{\text{average}} = (3.95 \pm 0.38_{\text{exp}} \pm 0.39_{\text{th}}) \times 10^{-3}$ 0.3 $\epsilon_{\rm K}$ NB: errors scaled by 3.0 0.2 0.1 0.0 0.2 -0.4 -0.2 0.0 0.4 0.6 0.8 1.

UVic

ρ

Belle and BABAR designed to measure and test CKM framework

• Sum of angles: $\alpha + \beta + \gamma = (177 \pm 9)^{\circ}$

 $\alpha = (88.5 \pm 4.5)^{\circ} \quad \beta = (21.4 \pm 0.8)^{\circ} \quad \gamma = (67 \pm 8)^{\circ}$

Sides of triangle from semileptonic B decays:
 |V_{cb}| (Lattice QCD for FF)
 |V_{cb}| (HF Sum Rules for FF)

$$|V_{cb}|_{excl}^{LQCD} = (39.04 \pm 0.55_{exp} \pm 0.74_{th}) \times 10^{-3}$$

$$|V_{cb}|_{incl} = (42.01 \pm 0.46_{exp} \pm 0.59_{th}) \times 10^{-3}$$

$$|V_{cb}|_{average} = (40.81 \pm 0.90_{exp} \pm 1.14_{th}) \times 10^{-3}$$

NB: errors scaled by 2.4

$$|V_{ub}|_{excl}^{LQCD} = (3.26 \pm 0.16_{exp} \pm 0.24_{th}) \times 10^{-3}$$

$$|V_{ub}|_{incl} = (4.42 \pm 0.19_{exp} \pm 0.15_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

NB: errors scaled by 3.0

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

Belle and *BABAR* designed to measure and test CKM framework

• Sum of angles: $\alpha + \beta + \gamma = (177 \pm 9)^{\circ}$

 $\alpha = (88.5 \pm 4.5)^{\circ}$ $\beta = (21.4 \pm 0.8)^{\circ}$ $\gamma = (67 \pm 8)^{\circ}$

Sides of triangle from semileptonic B decays: $|V_{cb}|$ (Lattice QCD for FF) $|V_{cb}|$ (HF Sum Rules for FF)

$$|V_{cb}|_{excl}^{LQCD} = (39.04 \pm 0.55_{exp} \pm 0.74_{th}) \times 10^{-3}$$

$$|V_{cb}|_{excl}^{LQCD} = (42.01 \pm 0.46_{exp} \pm 0.59_{th}) \times 10^{-3}$$

$$|V_{cb}|_{average} = (40.81 \pm 0.90_{exp} \pm 1.14_{th}) \times 10^{-3}$$

$$|V_{cb}|_{average} = (41.67 \pm 0.38_{exp} \pm 0.59_{th}) \times 10^{-3}$$

$$|V_{cb}|_{excl}^{LQCD} = (3.26 \pm 0.16_{exp} \pm 0.24_{th}) \times 10^{-3}$$

$$|V_{ub}|_{excl} = (4.42 \pm 0.19_{exp} \pm 0.15_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.39_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{exp} \pm 0.38_{th}) \times 10^{-3}$$

$$|V_{ub}|_{average} = (3.95 \pm 0.38_{th}) \times 10^{-3}$$

Results from the B-Factories

Angle $\alpha = \phi_2$

 $\alpha = \phi_2 \text{ accessible via } b \to u \text{ transitions in } B \to \pi\pi, B \to \rho\rho, \text{ or } B \to \rho\pi$ e.g. $B \to \pi^+\pi^- \text{ and } B \to \overline{B} \to \pi^+\pi^- \text{ interference } v_{a} \to \overline{d}$ $\xrightarrow{\mathbf{V}_{a}} \xrightarrow{\mathbf{V}_{a}} \xrightarrow{\mathbf{V}_{a$

Time-dependent decay rate of a B or a $ar{B}$ meson decaying into common CP eigenstate

$$\mathcal{P}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left\{ 1 + q \left[\mathcal{S}_{CP} \sin(\Delta m_d \Delta t) + \mathcal{A}_{CP} \cos(\Delta m_d \Delta t) \right] \right\}$$

 $S_{CP} = \sin 2\alpha$; $A_{CP} = 0$ at tree level With additional penguin diagrams ('pollution')

 $S_{CP} = \sqrt{1 - A_{CP}^2} \sin 2\alpha_{eff}$; $A_{CP} \neq 0$ allowed

Isospin analysis using, e.g. $B \rightarrow \pi^0 \pi^0$, recovers $\sin 2\alpha$ (penguin dominates over colour suppressed internal tree)

 $\mathcal{A}_{CP}: \text{ direct } CP \text{ violation } (= -\mathcal{C}_{CP})$ $\mathcal{S}_{CP}: \text{ mixing induced } CP \text{ violation}$ $q: \text{ flavor of } B_{tag}, q = +1 \text{ for } B_{tag} = B^0$ $\tau_{B^0}: B \text{ life time}$ $\Delta m_d: \text{ mass difference of } B_H \text{ and } B_L$ $\Delta t: \text{ decay time difference of } B_{CP} \text{ and } B_{tag}$

•New published result on $B \rightarrow \pi^+ \pi^-$ from *BABAR* and Belle (*BABAR* also has $B \rightarrow \pi^0 \pi^0$ on full dataset)

•
$$B \rightarrow \rho \rho$$
: VV final state, helicity analysis to measure CP
• $B \rightarrow \rho^+ \rho^-$ older from *BABAR* and Belle
• $B \rightarrow \rho^0 \rho^0$ full dataset from *BABAR* and Belle (new 2012)

• $B \rightarrow (\rho \pi)^0$ new result from *BABAR*: warning about lack of robustness in extracting $\alpha = \phi_2$ with current statistics

Angle $\alpha = \phi_2$

 \Rightarrow clear mixing induced \mathcal{CP} and presence of penguins

Angle $\alpha = \phi_2$

Overall fits for $\alpha = \phi_2$ using $B \rightarrow \pi\pi$, $B \rightarrow \rho\rho$, or $B \rightarrow \rho\pi$

(frequentist)

(bayesian)

15

 $\phi_2/\alpha = (88.7 \pm 3.1)^{\circ}$

Angle $\gamma = \phi_3$

 $B^{\pm} \rightarrow D^{(*)0} K^{(*)\pm}$ decays dominate $\gamma = \phi_3$ measurements $V = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$ W^{-2} \bar{u} B \bar{u} color suppressed color allowed $A_2 \propto V_{ub}V_{cs}^* \sim A\lambda^3(\rho + i\eta)$ $A_1 \propto V_{ch} V_{\mu s}^* \sim A \lambda^3$ $|A_{total}|^2 = |A_1|^2 + |A_2|^2 + 2|A_1||A_2|\cos(-\gamma + \delta)$ Theoretically clean: no penguin pollution $r_b = \frac{A(B^+ \to D^0 K^+)}{A(B^+ \to \overline{D}^0 K^+)}$ strong phase from B and D decay Unknowns: γ , r_b , $\delta_b + \delta_D$ $r_b \& \delta_b$ B hadronic parameters extracted with γ δ_D measured at charm factories J. Michael Roney **Results from the B-Factories** UVic

Angle $\gamma = \phi_3$

```
B^{\pm} \rightarrow D^{(*)0} K^{(*)\pm} decays dominate \gamma = \phi_3 measurements
```

Different methods for extracting $\gamma = \phi_3$ depending on the D decay mode final state

GLW [M. Gronau, D. London, D. Wyler, PLB253,483 (1991); PLB 265, 172 (1991)]

- D⁰ to two-body CP eigenstates K⁺K⁻, $\pi^+\pi^-$ (even), K_z π^0 , K_z ω (odd)

ADS [D. Atwood, I. Dunietz, A. Soni, PRL 78, 3357 (1997)]

- D⁰ to doubly Cabibbo suppressed decays $K^+\pi^-$, $K^+\pi^-\pi^0$, ...

GGSZ (Dalitz) [D. Atwood et al., PRL78, 3257 (1997); A. Giri et al., PRD68, 054018 (2003)]

- D⁰ to 3-body decays $K_{\xi}\pi^{+}\pi^{-}$, $K_{\xi}K^{+}K^{-}$, $\pi^{+}\pi^{-}\pi^{0}$, etc.
 - Dalitz plot fitted to determine how the strong phase of D⁰ decay amplitude varies over the Dalitz plane
 - model independent analysis

BABAR and Belle have reconstructed the most sensitive decay modes using all or nearly all of their full datasets **GLW+ADS+GGSZ** Combinations **BABAR** PRD87 052015 (2013) **BABAR** and Belle Belle CKM2012 arXiv:1301.2033

 $\gamma = (69^{+17})$ (mod 180°)

exp+DP model systematic= $\pm 4^{\circ}$

Physics of the B Factories to be submitted EPJC

 $\gamma = (67 \pm 11)^{\circ}$ $(mod \ 180^{\circ})$

Results from the B-Factories

UVic

 $\gamma = (68^{+15}_{-14})^{\circ} \pmod{180^{\circ}}$

Angle $\gamma = \phi_3$

```
B^{\pm} \rightarrow D^{(*)0} K^{(*)\pm} decays dominate \gamma = \phi_3 measurements
```

Different methods for extracting $\gamma = \phi_3$ depending on the D decay mode final state

GLW [M. Gronau, D. London, D. Wyler, PLB253,483 (1991); PLB 265, 172 (1991)]

- D⁰ to two-body CP eigenstates K⁺K⁻, $\pi^{+}\pi^{-}$ (even), K_s π^{0} , K_s ω (odd)

ADS [D. Atwood, I. Dunietz, A. Soni, PRL 78, 3357 (1997)]

- D⁰ to doubly Cabibbo suppressed decays $K^+\pi^-$, $K^+\pi^-\pi^0$, ...

GGSZ (Dalitz) [D. Atwood et al., PRL78, 3257 (1997); A. Giri et al., PRD68, 054018 (2003)]

- D⁰ to 3-body decays $K_s \pi^+ \pi^-$, $K_s K^+ K^-$, $\pi^+ \pi^- \pi^0$, etc.
 - Dalitz plot fitted to determine how the strong phase of D⁰ decay amplitude varies over the Dalitz plane
 - · model independent analysis

Results from the B-Factories

T Violation: BABAR, PRL 102, 211801 (2013)

- Well established canon of SM that weak interactions maximally violate parity (P) and charge conjugation (C) - neutrinos are LH, antineutrinos are RH.
- CP also measured to be violated in neutral kaon and B-meson systems phenomena well described within CKM framework
- The CPT Theorem (Locally Lorentz-invariant QFT conserves CPT) \rightarrow if there is CP violation, there is also violation of time reversal invariance (T)
- Difficult to establish experimentally T violation independent of CPT: need a system where we experimentally know what QM state is in before it decays.

 $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B(\alpha) B(\overline{\alpha})$ is an entangled P-wave state: EPR tells us the state of a B-meson prior to its decay if its EPRentangled partner decays and is identified – it's how BaBar and Belle measure CP violation ...

can also use this to search for direct T violation and test CPT using this approach Bernabeau, Martinez-Vidal, Villanueva-Perez, arXiv: JHEP08,064 (2012)

Γ Violation: BABAR, PRL 102, 211801 (2013)

• BABAR uses this approach to measure a non-zero T violation - strength predicted by CPT and the CP violation measured by BABAR and Belle

$$\left|i\right\rangle = \frac{1}{\sqrt{2}} \left[B^{0}(t_{1})\overline{B}^{0}(t_{2}) - \overline{B}^{0}(t_{1})B^{0}(t_{2})\right] = \frac{1}{\sqrt{2}} \left[B_{CP+}(t_{1})B_{CP-}(t_{2}) - B_{CP-}(t_{1})B_{CP+}(t_{2})\right]$$

Violation: BABAR, PRL 102, 211801 (2013)

Time dependent rate 8 decays

$$g_{\alpha,\beta}^{\pm}(\Delta\tau) \propto e^{-\Gamma\Delta\tau} \{1 + S_{\alpha,\beta}^{\pm} \sin(\Delta m_d \Delta\tau) + C_{\alpha,\beta}^{\pm} \cos(\Delta m_d \Delta\tau)\}$$

four pairs of transitions

S and C probe interference in decay-mixing and decay ML fit to determine 8 pairs of $S^{\pm}_{\alpha,\beta}$ and $C^{\pm}_{\alpha,\beta}$ parameters $\pm \{\Delta t > 0, \Delta t < 0\}$

α flavour tag {
$$\ell^+$$
, ℓ^- }

 β CP tag {K_L,K_S}

$$A_T(\Delta t) \approx \frac{\Delta C_T^+}{2} \cos \Delta m \Delta t + \frac{\Delta S_T^+}{2} \sin \Delta m \Delta t$$

 $\left\langle \mathbf{A}_{0.5}\right\rangle \mathbf{B}_{CP+}$ Å 0 5 -0.5 -0.5 0 2 8 0 2 8 4 6 6 Δt (ps) Δt (ps) A^L 0.5 -0.5 -0.5 blue: T-conserving 8 6 0 2 6 8 Δt (ps) Δt (ps)

Combined Fit results: $\Delta S^{+}_{T} = -1.37 \pm 0.14 \pm 0.06$ $\Delta C^{+}_{T} = +0.10 \pm 0.14 \pm 0.08$ $\Delta S^{-}_{T} = +1.17 \pm 0.18 \pm 0.11$ $\Delta C^{-}_{T} = +0.04 \pm 0.14 \pm 0.08$

Expected: -2 sin2β 0.0 +2 sin2β 0.0

14σ signal Consistent with sin2β results on CP Violation and with CPT invariance

 $\rightarrow \ell \, \nu_{\ell}$ simple purely leptonic pseudo-scalar decays carry information about product of CKM element and strong interaction 'decay constant'

$$BF(B \rightarrow \ell \nu)_{SM} = \frac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 \left|V_{ub}\right|^2 f_B^2 \tau_M \left(1 + \delta_{EM}^{B\ell 2}\right)$$

• Interesting because some New Physics theories have charged Higgs contributing to observed decay rate

- Additional tree level contribution from a charged Higgs •
 - It does not suffer from helicity suppression, but gets the same m_l dependence from Yukawa coupling
 - Branching fraction theoretical expression depends on the NP model

$$\mathcal{B}(B \to l\nu)_{2HDM} = \mathcal{B}(B \to l\nu)_{SM} \times (1 - tan^2 \beta \frac{m_B^2}{m_H^2})^2 \quad \text{W. S. Hou, Phys. Rev. D}$$

$$\mathcal{B}(B \to l\nu)_{SUSY} = \mathcal{B}(B \to l\nu)_{SM} \times (1 - \frac{tan^2 \beta}{1 + \epsilon_0 tan\beta} \frac{m_B^2}{m_H^2})^2 \quad \text{A.G. Akeroyd and S.Results from the B-Factories}$$

0 48 (1993) 2342.

ecksiegel 2003

$B^+ \rightarrow \tau^+ \nu_{\tau}$

Uses full reconstruction tagging

• fully reconstruct one of the B's to tag B flavour/charge, determine its momentum, and exclude decay products of this B from further analysis

Powerful tool for B decays with neutrino →unique feature at e+e- B factories

At the $\Upsilon(4S)$ the B⁺ and B⁻ decay products overlap, this associates parent B with each particle BB

Results from the B-Factories

$B^- \rightarrow \tau^- \nu_{\tau}$ Results

Main discriminating variable on the signal side: remaining energy in the calorimeter, not associated with any charged track or photon

 \rightarrow Signal at E_{FCI} = 0

Belle
$$Br(B \rightarrow \tau v) = [0.72 + 0.27 + 0.11] \times 10^{-4}$$

PRL 110 (2013) 131801

BABAR
$$Br(B \rightarrow \tau \nu) = [1.83^{+0.53}_{-0.49} \pm 0.24] \times 10^{-4}$$

arXiv:1207.0698[hep-ex] submitted to PRD

All measurements combined:

$$BF(B \rightarrow \tau \nu) = (1.15 \pm 0.23) \cdot 10^{-4}$$

cf Standard Model:

$$BF(B \to \tau \nu)_{SM} = (1.01 \pm 0.29) \times 10^{-4}$$

(using $|V_{ub}| = (3.95 \pm 0.38 \pm 0.39) \times 10^{-4}$

120 (Projected in all Mmiss² region

signal (3.0σ)

0.4 0.6 0.8

ackground

Events / 0.05 GeV 09 00 70 00 09 00

MeV

e 250

200 Z

150

100

50

20

300[⊨] (a)

0.2

0.2

1.2

1

Results after ICHEP 2012 $BF(B \rightarrow \tau \nu) = (1.15 \pm 0.23) \cdot 10^{-4}$

$B \rightarrow D^{(*)} \tau \nu$ Decays

Semileptonic decay sensitive to charged Higgs

Ratio of τ to $\mu,\!e$ could be reduced/enhanced significantly

$$R(D) = \frac{\Gamma(\overline{B} \to D\tau\nu)}{\Gamma(\overline{B} \to D\ell\nu)} \qquad R(D^*) = \frac{\Gamma(\overline{B} \to D^*\tau\nu)}{\Gamma(\overline{B} \to D^*\ell\nu)}$$

- A well understood process, form factors measured for $B \rightarrow D^{(*)} \ell \nu$, decays involving τ have additional helicity amplitude
- Several experimental and theoretical uncertainties cancel in the ratio!
- non-SM contribution from H[±] expected to change rates for $B \to D^{(*)} \tau \nu$

Scalar Helicity Amplitude: (good to 1% for $m_{H^{\pm}} > 15 \text{GeV}$)

$$H_{S}^{2HDM} \approx H_{S}^{SM} \times \left(1 - \frac{\tan^{2} \beta}{m_{H^{\pm}}^{2}} \frac{q^{2}}{1 \mp m_{c}/m_{b}}\right)$$

- for
$$B \rightarrow D\tau v$$

+ for $B \rightarrow D^* \tau v$

$B \rightarrow D^{(*)}\tau\nu$ Decays BABAR PRL101802 (2012)

Events/(0.25 GeV²)

BABAR, PRL101802 (2012)

Results from the B-Factories

 $\mathcal{R}(D)_{\text{exp}} = 0.440 \pm 0.072$ $\mathcal{R}(D^*)_{\text{exp}} = 0.332 \pm 0.030$

SM expectations in S. Faifer. J. Kamenik, I. Nisandzic, PRD 85, 094025 (2012).

Combined BaBar result: 3.4σ above SM

27

$B \rightarrow D^{(*)}\tau\nu$ Decays BABAR PRL101802 (2012)

BABAR, PRL101802 (2012)

If discrepancy with SM holds, result cannot be explained by Type II 2HDM; excluded over full (*) parameter space at (*) 99.8%CL

2.0σ

 $\mathcal{R}(D)_{\text{exp}} = 0.440 \pm 0.072$ $\mathcal{R}(D^*)_{\text{exp}} = 0.332 \pm 0.030$

 $\mathcal{R}(D)_{\rm SM} = 0.297 \pm 0.017$ $\mathcal{R}(D^*)_{\rm SM} = 0.252 \pm 0.003$

SM expectations in S. Fajfer, J. Kamenik, I. Nisandzic, PRD 85, 094025 (2012).

Can be accommodated in more general extensions of Type III 2HDM Combined BaBar result: 3.4 σ above SM

2.7σ

Results from the B-Factories

First observation of $B \rightarrow D^{*-}\tau v$ by Belle (2007)

Belle did not publish a measurement of the ratio directly for all modes and so did not quote average R values. Publications based on fraction of Belle data At May 2013 FPCP meeting Andrej Bozek (Belle) presented a 'private average' of the published Belle results

Belle Deviations from SM based on A. Bozek average of Belle results (FPCP 2013) $R(D^*) = 3.0\sigma$ $R(D) = 1.4\sigma$ $R(D^{(*)}) = 3.3\sigma$

Bozek reports a combined BaBar and Belle deviation from the SM of 4.8σ

Results from the B-Factories

Searches for Light CP-odd Higgs

- $\circ \Upsilon(2S,3S) \rightarrow \gamma A^0, A^0 \rightarrow hadrons$
- $\circ \Upsilon(1S) \rightarrow \gamma A^0, A^0 \rightarrow \tau^+ \tau^-, \ \mu^+ \mu^-$

Dark Higgs Searches $\circ e^+e^- \rightarrow A'h', h' \rightarrow A'A', A' \rightarrow h_1h_2 (h_i = e, \mu, \pi)$

New BABAR result - shown first here at Lepton Photon 2013:

Search for light Higgs decaying to two gluons or $s\overline{s}$ in radiative decays of the $\Upsilon(1S)$

BaBar Searches for Light CP-odd Higgs

Search for light Higgs decaying to two 90% C.L. Upper Limit 90% C.L. Upper Limit 10⁻³ 10⁻⁴ gluons or $s\overline{s}$ in radiative decays of the $\Upsilon(1S)$ BABAR oreliminary $e^+e^- \to \Upsilon(2S) \to \pi^+\pi^-\Upsilon(1S)$ 10-5 10⁻⁶ 10⁻⁷ $\Upsilon(1S) \to \gamma A^0; A^0 \to gg \text{ or } s\overline{s}$ 10⁻¹ 10⁻² Expected (959 Sample: 17.6×10^6 Y(1S) decays 10⁻³ 10-4 10⁻⁵ At low Higgs mass, $m_A < 2m_{\tau}$: 10⁻⁶

• expect $s\overline{s}$ to dominate rate at high $\tan\beta^{10^7}$ • expect gg to dominate rate at low $\tan\beta$

A⁰ Hypothesis Mass (GeV/c²)

 $\gamma \mathbf{A}^{0}$) x B(\mathbf{A}^{0} -

Observed limits from

 $B(Y(1S) \rightarrow \gamma A^0) \times B(A^0 -$

Lepton Flavour Violation in Tau Decays LFV is long established way of seeking evidence of New Physics

- 48 channels probed by Belle and BABAR
- LHCb has recently entered the game

- 48 channels probed by Belle and BABAR
- LHCb has recently entered the game

Lepton Flavour Violation Searches in tau Decays LHCb PhysLett B 7224(2013) 35

LHCb uses $D_s \rightarrow \tau v$ as source of taus PhysLett B 7224(2013) Published on fb⁻¹ of data looking for LFV and Baryon number and Lepton number non-conserving decays $\mathcal{B}(\tau^- \rightarrow \mu^- \mu^+ \mu^-)$

$$= \mathcal{B}(D_s^- \to \phi(\mu^+\mu^-)\pi^-) \times \frac{f_\tau^{D_s}}{\mathcal{B}(D_s^- \to \tau^- \bar{\nu}_\tau)} \times \frac{\epsilon_{\rm cal}^{\rm REC\&SEL}}{\epsilon_{\rm sig}^{\rm REC\&SEL}} \times \frac{\epsilon_{\rm cal}^{\rm TRIG}}{\epsilon_{\rm sig}^{\rm TRIG}} \times \frac{N_{\rm sig}}{N_{\rm cal}}$$

Results from the B-Factories

Ø

$e^+e^- \rightarrow K^+K^-(\gamma)$ Precision Cross Section BaBar, submitted to PRD arXiv 1306.3600 36

Precision Cross Section of $e^+e^- \rightarrow K^+K^-(\gamma)$

Next generation e+e- B-factory

Belle II at SuperKEKB

Physics Programme

- Test CKM at 1% level
 - CPV in B decays from new physics (non-CKM)
- B-recoil technique for $B \rightarrow K^{(*)}\ell^+\ell^-, B \rightarrow \tau\nu, B \rightarrow D^{(*)}\tau\nu$
- τ physics: lepton flavour violation, g-2, EDM, CPV, $|V_{us}|$...
- Charm: mixing, CPV,...
- Many other topics:
 - ^o Υ(5S) physics, , ISR radiative return, spectroscopy, Dark Sector probe, low mass Higgs...
- Physics motivation is independent of LHC
 - If LHC finds NP, precision flavour input essential
 - If LHC finds no NP, high statistics B and τ decays are unique way of probing >TeV scale physics

Machine design parameters

parameters		KEKB		SuperKEKB		unite
		LER	HER	LER	HER	units
Beam energy	Eb	3.5	8	4	7	GeV
Half crossing angle	φ	11		41.5		mrad
Horizontal emittance	٤x	18	24	3.2	5.0	nm
Emittance ratio	к	0.88	0.66	0.27	0.25	%
Beta functions at IP	β_x^*/β_y^*	1200/5.9		32/0.27	25/0.31	mm
Beam currents	lb	1.64	1.19	3.60	2.60	А
beam-beam parameter	ξ _y	0.129	0.090	0.0886	0.0830	
Luminosity	L.	2.1 x 10 ³⁴		8 x 10 ³⁵		cm ⁻² s ⁻¹

• Small beam size & high current to increase luminosity

Large crossing angle

Change beam energies to solve the problem of LER short lifetime

Belle II and LHCb (and ATLAS & CMS) are Complementary

J. Michael Roney

Summary

- Belle and *BABAR* are continuing to publish
 - Completing Physics of the B-Factories Book summarizing the papers currently published by both collaborations
 - Completing the CKM program but also going into new areas – e.g. T-violation; light Higgs searches, Dark Sector searches
 - CKM is generally describing the data well
- 3.4 σ tension with SM in *BABAR* B \rightarrow D^(*) τ ν decays, earlier published Belle results see similar hints
 - eagerly awaiting new analysis on Belle full data set
- Looking forward to future data from Belle II at SuperKEKB and LHCb

38

Additional Slides

39

NMSSM Parameter Space

- BF(Υ(1S) → γ A⁰) depends on nonsinglet fraction
- High mass Higgs very difficult to exclude

Results from the B-Factories

J. Michael Roney

41

Channel	$a_{\mu}^{\rm had, LO}$ [10 ⁻¹⁰]	$\Delta \alpha_{had} (M_Z^2) [10^{-4}]$	
π ^o γ	$4.42\pm 0.08\pm 0.13\pm 0.12$	$0.36\pm 0.01\pm 0.01\pm 0.01$	
77	$0.64 \pm 0.02 \pm 0.01 \pm 0.01$	$0.08\pm 0.00\pm 0.00\pm 0.00$	Contributions to $a^{had,LO}$ and $\Lambda \alpha$ (M^2)
$\pi^{+}\pi^{-}$	$507.80 \pm 1.22 \pm 2.50 \pm 0.56$	$34.43 \pm 0.07 \pm 0.17 \pm 0.04$	$and \Delta \alpha_{had} (M_Z)$
$\pi^{+}\pi^{-}\pi^{0}$	$46.00 \pm 0.42 \pm 1.03 \pm 0.98$	$4.58\pm 0.04\pm 0.11\pm 0.09$	Davier et al Eur.Phys.J. C71 (2011) 1515
$2\pi^+2\pi^-$	$13.35 \pm 0.10 \pm 0.43 \pm 0.29$	$3.49 \pm 0.03 \pm 0.12 \pm 0.08$,
$\pi^{+}\pi^{-}2\pi^{0}$	$18.01 \pm 0.14 \pm 1.17 \pm 0.40$	$4.43\pm 0.03\pm 0.29\pm 0.10$	
$2\pi^+ 2\pi^- \pi^0$ (η excl.)	$0.72\pm0.04\pm0.07\pm0.03$	$0.22\pm 0.01\pm 0.02\pm 0.01$	
$\pi^+\pi^-3\pi^0$ (η excl., from isospin)	$0.36\pm 0.02\pm 0.03\pm 0.01$	$0.11\pm 0.01\pm 0.01\pm 0.00$	
$3\pi^{+}3\pi^{-}$	$0.12\pm 0.01\pm 0.01\pm 0.00$	$0.04\pm 0.00\pm 0.00\pm 0.00$	For most of these channels, BaBar provides
$2\pi^+ 2\pi^- 2\pi^0$ (η excl.)	$0.70\pm 0.05\pm 0.04\pm 0.09$	$0.25\pm 0.02\pm 0.02\pm 0.03$	
$\pi^+\pi^-4\pi^0$ (η excl., from isospin)	$0.11\pm 0.01\pm 0.11\pm 0.00$	$0.04\pm 0.00\pm 0.04\pm 0.00$	the most precise measurements from
$\eta \pi^+ \pi^-$	$1.15\pm0.06\pm0.08\pm0.03$	$0.33 \pm 0.02 \pm 0.02 \pm 0.01$	ISD studios
$\eta\omega$	$0.47 \pm 0.04 \pm 0.00 \pm 0.05$	$0.15 \pm 0.01 \pm 0.00 \pm 0.02$	ISK studies
$\eta 2\pi^{+}2\pi^{-}$	$0.02 \pm 0.01 \pm 0.00 \pm 0.00$	$0.01\pm 0.00\pm 0.00\pm 0.00$	
$\eta \pi^+ \pi^- 2\pi^0$ (estimated)	$0.02\pm 0.01\pm 0.01\pm 0.00$	$0.01\pm 0.00\pm 0.00\pm 0.00$	
$\omega \pi^0 (\omega \rightarrow \pi^0 \gamma)$	$0.89 \pm 0.02 \pm 0.06 \pm 0.02$	$0.18\pm 0.00\pm 0.02\pm 0.00$	
$\omega \pi^+ \pi^-, \omega 2 \pi^0 (\omega \rightarrow \pi^0 \gamma)$	$0.08\pm 0.00\pm 0.01\pm 0.00$	$0.03\pm 0.00\pm 0.00\pm 0.00$	
ω (non- $3π$, $πγ$, $ηγ$)	$0.36\pm 0.00\pm 0.01\pm 0.00$	$0.03\pm 0.00\pm 0.00\pm 0.00$	
$K^{+}K^{-}$	$21.63 \pm 0.27 \pm 0.58 \pm 0.36$	$3.13 \pm 0.04 \pm 0.08 \pm 0.05$	γ
$K_S^0 K_L^0$	$12.96 \pm 0.18 \pm 0.25 \pm 0.24$	$1.75 \pm 0.02 \pm 0.03 \pm 0.03$	
ϕ (non- $K\overline{K}, 3\pi, \pi\gamma, \eta\gamma$)	$0.05\pm0.00\pm0.00\pm0.00$	$0.01\pm 0.00\pm 0.00\pm 0.00$	>
$KK\pi$ (partly from isospin)	$2.39 \pm 0.07 \pm 0.12 \pm 0.08$	$0.76 \pm 0.02 \pm 0.04 \pm 0.02$	S
$K\overline{K}2\pi$ (partly from isospin)	$1.35\pm0.09\pm0.38\pm0.03$	$0.48 \pm 0.03 \pm 0.14 \pm 0.01$	5
$K\overline{K}3\pi$ (partly from isospin)	$-0.03\pm0.01\pm0.02\pm0.00$	$-0.01\pm0.00\pm0.01\pm0.00$	2
<i>φ</i> η	$0.36 \pm 0.02 \pm 0.02 \pm 0.01$	$0.13\pm 0.01\pm 0.01\pm 0.00$	2
$\omega K\overline{K} (\omega \rightarrow \pi^0 \gamma)$	$0.00\pm 0.00\pm 0.00\pm 0.00$	$0.00\pm 0.00\pm 0.00\pm 0.00$	<u> </u>
J/ψ (Breit-Wigner integral)	6.22 ± 0.16	7.03 ± 0.18	
$\psi(2S)$ (Breit-Wigner integral)	1.57 ± 0.03	2.50 ± 0.04	
$R_{\rm data}$ [3.7 – 5.0 GeV]	$7.29\pm0.05\pm0.30\pm0.00$	$15.79\pm0.12\pm0.66\pm0.00$	had μ
$R_{\rm QCD}$ [1.8 – 3.7 GeV] _{uds}	33.45 ± 0.28	24.27 ± 0.19	
R_{QCD} [5.0 - 9.3 GeV] _{udsc}	6.86 ± 0.04	34.89 ± 0.18	1101
R_{QCD} [9.3 – 12.0 GeV] _{udscb}	1.21 ± 0.01	15.56 ± 0.04	
R_{QCD} [12.0 - 40.0 GeV] _{udscb}	1.64 ± 0.01	77.94 ± 0.12	
R_{QCD} [> 40.0 GeV] _{udscb}	0.16 ± 0.00	42.70 ± 0.06	
$R_{\rm QCD}$ [> 40.0 GeV] _t	0.00 ± 0.00	-0.72 ± 0.01	
Sum	$692.3\pm1.4\pm3.1\pm2.4\pm0.2_{\psi}\pm0.3_{QCD}$	$274.97\pm0.17\pm0.78\pm0.37\pm0.18\psi\pm0.52_{QCD}$	[555]

