QCD at Colliders: Theoretical Results

Stefan Höche

SLAC

Lepton-Photon 2013 San Francisco, 06/25/13

Outline

- ► NLO
- ► NNLO
- Resummation
- Event generators

Disclaimer: 99% of recent interesting QCD results not covered. Apologies to all whose work was omitted because of time constraints!

- ATLAS Preliminary m. = 125.5 GeV $W,ZH \rightarrow bb$ 5 = 7 TeV: Ldt = 4.7 fb - 8 TeV: 1 ct = 13 fb⁻¹ $H \rightarrow \tau \tau$ 5 = 7 TeV (1 ct = 4.6 fb⁻¹ √s = 8 TeV: Ldt = 13 fb⁻¹ $H \rightarrow WW^{(*)} \rightarrow h/h$ 5 = 7 TeV: Ldt = 4.6 fb s = 8 TeV: Ldt = 20.7 fb $H \rightarrow \gamma \gamma$ s = 7 TeV: Ldt = 4.8 fb⁻¹ 5 = 8 TeV: Ldt = 20.7 fb $H \rightarrow ZZ^{(*)} \rightarrow 4I$ s = 7 TeV: Ldt = 4.6 fb⁻¹ s = 8 TeV: Ldt = 20.7 fb $\mu = 1.30 \pm 0.20$ Combined 15 - 7 TeV: 1 dt - 4 6 - 48 fb s = 8 TeV: Ldt = 13 - 20.7 fb -1 0 +1 Signal strength (µ)
- ► 2013 → Higgs physics has moved from discovery to precision stage
- Improved theoretical predictions required to search for (small) deviations from Standard Model
- Great success of SM so far, but should keep looking everywhere

Toolkit inventory

- All processes of interest
 - Parton shower Monte Carlo (Herwig, Pythia, Sherpa,...)
 - Automated tree-level calculations & merging with PS (Alpgen,CompHEP,Helac,MadGraph,Pythia,Sherpa,...)
- Available for increasingly complex final states $(2\rightarrow 4,5,6)$
 - Automated NLO (BlackHat,GoSam,Helac,MadGolem,MadLoop,NJet,OpenLoops,Rocket,...)
 - ► Matching to parton shower (aMC@NLO,Herwig,POWHEG Box,Sherpa,...)
 - Merging at NLO (aMC@NLO,Pythia,Sherpa,...)
- Available for some processes
 - ► Inclusive NNLO (W,Z,gg \rightarrow H, $t\bar{t}$,jets,H+jet)
 - Fully differential NNLO (FEHiP, FEWZ, HNNLO)
 - ▶ NNLO+N[×]LL resummation ($e^+e^- \rightarrow 2/3$ jets, $pp \rightarrow H$)

Automated NLO calculations

► General approach: subtraction methods

$$\mathrm{d}\hat{\sigma}_{\mathrm{NLO}} = \int_{\Phi_n} \left(\mathrm{d}\hat{\sigma}^{\mathrm{B}} + \underbrace{\mathrm{d}}\hat{\sigma}^{\mathrm{V}} + \mathrm{d}\hat{\sigma}^{\mathrm{MF}} + \int_{\Phi_1} \underbrace{\mathrm{d}}\hat{\sigma}^{\mathrm{S}}}_{\mathbf{G}_{n+1}} \right) + \int_{\Phi_{n+1}} \underbrace{\left(\mathrm{d}\hat{\sigma}^{\mathrm{R}} - \mathrm{d}\hat{\sigma}^{\mathrm{S}} \right)}_{\mathbf{G}_{n+1}}$$

finite, compute with MC

- Universal infrared behaviour of amplitudes
 - ► FKS subtraction Frixione,Kunszt,Signer 1995
 - ► Dipole subtraction Catani, Seymour 1996 + Dittmaier, Trocsanyi 2002
 - Antenna subtraction Kosower 1997
- ► Realized in tree-level ME generators & stand-alone codes
 - Sherpa Gleisberg, Krauss 2007
 - MadDipole Frederix, Greiner, Gehrmann 2008
 - Helac Czakon, Papadopoulos, Worek 2009
 - TeVJet Seymour, Tevlin 2008
 - AutoDipole Hasegawa, Moch, Uwer 2008
 - MadFKS Frederix, Frixione, Maltoni, Stelzer 2009

The NLO revolution ...

 One-loop amplitudes evaluated by extracting coefficients of box/triangle/bubble/tadpole master integrals

$$A = \sum d_{i} + \sum c_{i} + \sum b_{i} + \sum b_{i} + R$$

- ► "Feynmanian" approach → Improved decomposition & reduction Denner,Dittmaier 2005; Binoth,Guillet,Pilon,Heinrich,Schubert 2005
- ► "Unitarian" approach → Use multi-particle cuts & complex momenta Bern,Dixon,Dunbar,Kosower 1994; Britto,Cachazo,Feng 2004; Ossola,Papadopoulos,Pittau 2006; Forde 2007; Ellis,Giele,Kunszt,Melnikov 2008
- ► Plethora of (semi-)automated programs emerged: BlackHat, GoSam, HelacNLO, MadLoop, MadGolem, NJet, OpenLoops, Rocket, ... Badger,Bern,Bevilacqua,Biedermann,Binoth,Cascioli,Cullen,Czakon,Dixon,Ellis, Febres Cordero,Frederix,Frixione,Garzelli,Giele,Goncalves Netto,Greiner,Guffanti, Guillet,vanHameren,Heinrich,Hirschi,Ita,Kardos,Karg,Kauer,Kosower,Lopez-Val,Kunszt, Luisoni,Maierhöfer,Maître,Maltoni,Mastrolia,Mawatari,Melnikov,Ossola,Ozeren, Papadopoulos,Pittau,Plehn,Pozzorini,Reiter,Reuter,Tramontano,Uwer,Wigmore,Worek, Yundin,Zanderighi,Zeppenfeld,...

... making wishes come true

Process $(V \in \{Z, W, \gamma\})$	Comments
1. $pp \rightarrow VV$ jet	WW jet completed by Dittmaier/Kallweit/Uwer; Campbell/Ellis/Zanderighi ZZ jet completed by
2. $pp \rightarrow Higgs+2 jets$	Dimotin / siessberg / Xarg / Kauer / Sanguinetti WZ jet, $W\gamma$ jet completed by Campanario et al. NLO QCD to the gg channel completed by Campbell/Ellis/Zanderighi NLO QCD+EW to the VBF channel completed bo (circipiir)/(penere/f)titrajer
3. $pp \rightarrow V V V$	Interference QCD-EW in VBF / Standard Interference QCD-EW in VBF / Standard ZZZ completed by Lazopoulos/Melnikov/Petriello and WWZ by Hankele/Zeppenfeld see also Binoth/Ossola/Pepadopoulos/Pittau VBFNLOmeanwhile also contains MMMM ZZW ZZZ MMCa ZZ M/Cz M/Cz Zzz
4. $pp \rightarrow t\bar{t} b\bar{b}$	YIT, WYJ YT, WYJ relevant for tH, computed by Bredenstein/Denner/Dittmaier/Pozzorini and Bevilacqua/Czakon/Papadopoulos/Pittau/Worek
5. $pp \rightarrow V+3$ jets	W+3 jets calculated by the Blackhat/Sherpa and Rocket collaborations Z+3 jets by Blackhat/Sherpa
6. $pp \rightarrow t\bar{t}$ +2jets	relevant for ttH, computed by Bevilacqua/Czakon/Papadopoulos/Worek
7. $pp \rightarrow VV b\bar{b}$, 8. $pp \rightarrow VV+2jets$	Pozzorini et al. Bevilacqua et al. $W^+W^++2jets, W^+W^-+2jets, relevant for VBF H \rightarrow VW$ VBF contributions by (Bozzi/)Jäger/Oleari/Zeppenfeld
9. $pp \rightarrow b\bar{b}b\bar{b}$ 10. $pp \rightarrow V + 4$ jets	Binoth et al. top pair production, various new physics signatures Blackhat/Sherpa: W+4jets,Z+4jets con also HF for W+ nieter
11. $pp \rightarrow Wb\bar{b}j$ 12. $pp \rightarrow t\bar{t}t\bar{t}$	top, new physics signatures, Reina/Schutzmeier various new physics signatures, Bevilacqua/Worek
$pp ightarrow W \gamma \gamma$ jet $pp ightarrow 4$ jets	Campanario/Englert/Rauch/Zeppenfeld Blackhat/Sherpa

Experimenter's NLO wishlist

- Started Les Houches 2005
- Item 9 added in 2007, 10-12 in 2009
- ► Finally retired in 2012
- Now to be replaced by NNLO wishlist?

First process from the (much longer) 2001 wishlist

- ▶ $pp \rightarrow W + 5$ jets Bern,Dixon,Febres Cordero,SH,Ita,Kosower,Maître,Ozeren 2013
- Qualitatively very similar to $pp \rightarrow W + 4$ jets
- Allows extrapolation of jet rates to higher multiplicity

The NNLO frontier

► Structure of the calculation

$$\begin{split} \mathrm{d}\hat{\sigma}_{\mathrm{NNLO}} &= \int_{\Phi_{n+2}} \left(\mathrm{d}\hat{\sigma}^{RR} - \mathrm{d}\hat{\sigma}^{S} \right) + \int_{\Phi_{n+1}} \left(\mathrm{d}\hat{\sigma}^{RV} - \mathrm{d}\hat{\sigma}^{VS} + \mathrm{d}\hat{\sigma}^{MF,1} \right) \\ &+ \int_{\Phi_{n}} \left(\mathrm{d}\hat{\sigma}^{VV} + \mathrm{d}\hat{\sigma}^{MF,2} \right) + \int_{\Phi_{n+1}} \mathrm{d}\hat{\sigma}^{VS} + \int_{\Phi_{n+2}} \mathrm{d}\hat{\sigma}^{S} \end{split}$$

Require three principal ingredients

- Two-loop matrix elements explicit poles from loop integrals
- One-loop matrix elements explicit poles from loop integral implict poles from real emission
- Tree-level matrix elements implicit poles from real emissions
- ► Challenge: Construction of subtraction methods for RR and RV contribution

Methods for real radiation at NNLO

Sector decomposition Binoth, Heinrich 2004; Anastasiou, Melnikov, Petriello 2004

- *pp* → *H*, *pp* → *V* Anastasiou,Melnikov,Petriello Bühler,Herzog,Lazopoulos,Müller
- Antenna subtraction Gehrmann, Gehrmann-DeRidder, Glover
 - ▶ $e^+e^- \rightarrow 3jets$ Gehrmann, Gehrmann-DeRidder, Glover, Heinrich, Weinzierl
 - ► *pp* → 2jets Gehrmann,Gehrmann-DeRidder,Glover,Pires
- ► *q_T* subtraction Catani,Grazzini 2007
 - ▶ $pp \rightarrow H, pp \rightarrow V, pp \rightarrow VH, pp \rightarrow \gamma\gamma$ Catani,Cieri,DeFlorian,Ferrera,Grazzini,Tramontano
- Sector-improved subtraction Czakon 2010;Boughezal,Melnikov,Petriello 2011
 - $pp \rightarrow t\overline{t}$ Czakon,Fiedler,Mitov
 - ▶ pp → H+jet Boughezal,Caola,Melnikov,Petriello,Schulze

Diphoton production at NNLO

Catani, Cieri, de Florian, Ferrera, Grazzini 2011

- Frixione photon isolation criterion
- q_T subtraction for real corrections
- First fully consistent inclusion of box contribution

Top pair production at NNLO

- $qar{q} o tar{t}$ Bärnreuther,Czakon,Mitov 2012 $gg o tar{t}$ Czakon,Fiedler,Mitov 2013
 - Sector-improved subtraction for double real contribution
 - First hadron collider calculation at NNLO with more than 2 colored partons
 - First NNLO hadron collider calculation with massive fermions
 - Point of saturation reached, where uncertainties (scale, PDF, α_s, m_t) are all of same size
 - Already used to constrain PDFs Czakon, Mangano, Mitov, Rojo 2013

Jet production at NNLO

 $pp \rightarrow 2$ jets Gehrmann,Gehrmann-DeRidder,Glover,Pires 2013

- Antenna subtraction in double real and real-virtual contribution
- Calculation implemented in a parton-level event generator
- Leading colour, gluons only but very small scale dependence

Higgs+jet production at NNLO

Boughezal, Caola, Melnikov, Petriello, Schulze 2013

- ► Two independent calculations
- Sector-improved subtraction for double real contribution
- ► Large K-factor, 30% enhancement w.r.t. NLO for µ = m_H
- Gluonic contribution only, but very small scale dependence 20% at NLO → 5% at NNLO
- Excellent numerical stability

Importance of exclusive calculations

- Higgs measurements in WW channel binned in number of jets to reduce background (top veto)
- Also used to separate gluon fusion from VBF
- Different uncertainties in different jet bins

Higgs production with a jet veto

NLL Banfi,Salam,Zanderighi 2012, NNLL Banfi,Monni,Salam,Zanderighi 2012

- Automated NLL resummation (CESAR)
- Continued to NNLL+NNLO using q_T resummation
- ▶ Hadronization and UE corrections have small impact (<1%)

Higgs production with a jet veto

Becher, Neubert 2012

- ► First all-order factorization theorem for Higgs production with a jet veto
- K_T -type jet algorithm separates soft & collinear modes for intermediate R
- ▶ Resummation at NNLL, now working on N³LL Becher, Neubert, Rothen

Higgs production with a jet veto

Tackmann, Walsh, Zuberi 2013

- $\label{eq:largefixed-order uncertainty} \begin{array}{c} \Delta^2_{incl} + \Delta^2_{\geq 1} \\ \text{reduced by SCET NNLL'+NNLO} \end{array}$
- Full NNLO calculation of soft function for H_T veto + clustering corrections Tackmann,Walsh,Zuberi 2012

Higgs+jet production with a jet veto

Liu, Petriello 2013

- ► Leading jet with transverse momentum of O(m_H) not uncommon
- Fixed-order uncertainty Δ² = Δ²_{≥1} + Δ²_{≥2} large at small p_{T,veto} Stewart, Tackmann 2011
- Significant reduction by NLL' SCET resummation matched to NLO

Parton shower event generators

- ► PS provides resummation to (N)LL accuracy and realistic final states
- ► Matching allows for NLO precision in all aspects of experimental analysis

New concepts

- Sector showers Larkoski, Peskin
- Antenna showers
 Giele,Gehrmann-DeRidder,
 Hartgring,Kosower,Laenen,Lopez-Villarejo,Ritzmann,Skands

Extension of older methods

- Dipole showers
 Gieseke, Plätzer
- Full color showers SH,Krauss,Plätzer, Schönherr,Siegert,Sjödahl

NLO + Parton Shower Matching

- NLO calculation provides normalization and exact description of first hard emission, PS resums jet rates at (N)LL and allows to generate particle-level events
- Methods: MC@NLO Frixione, Webber 2002 and POWHEG Nason 2004
- Public (automated) frameworks: POWHEG Box Alioli,Nason,Oleari,Re 2010 and Sherpa SH,Krauss,Schönherr,Siegert 2012
- ► aMC@NLO → full NLO automation using MadLoop/MadDipole/MadFKS Frederix, Frixione,Hirschi,Maltoni,Pittau,Torrielli 2011

SH, Krauss, Siegert, Schönherr 2012

Combination of NLO+PS matched calculations

- ► ME+PS merging promoted to NLO accuracy Lavesson, Lönnblad 2008; Lönnblad, Prestel 2012; Gehrmann, SH, Krauss, Schönherr, Siegert 2012; Frixione, Frederix 2012
- ► Three different methods, implemented in Pythia, Sherpa and aMC@NLO
- ► Allows inclusive predictions with uncertainties from event generators

Hamilton.Nason.

Zanderighi 2012

Multi-scale improved NLO (MINLO)

- Interpret NLO event in terms of QCD branchings, much like a parton-shower
- ► Assign transverse momentum scales q to splittings, evaluate α_s at these scales
- Multiply with Sudakov factors, but subtract first-order expansion (already included in NLO calculation)
- ► Can be used to perform NLO calculation for X+jet in region where p_{Tj} → 0

Hamilton,Nason,Oleari, Zanderighi 2012

Jet ratio scaling patterns

• Consider cross section ratios in X + n jets

$$R_{(n+1)/n} = \frac{\sigma_{n+1}^{\text{excl}}}{\sigma_n^{\text{excl}}}$$

 \sim stable against QCD corrections <code>Gerwick,Plehn,Schumann,Schichtel 2012</code> Can be computed using NLL jet rates <code>Gerwick,Schumann,Gripaios,Webber 2012</code> Helpful to determine many-jet backgrounds in BSM searches

Staircase Scaling:

$$R_{(n+1)/n} = \text{const} \quad \left(\sigma_n = \sigma_0 R^n\right)$$

- ► First predicted for W/Z+jets Berends,Giele,Kuijf 1989 Computed for W+ ≤ 5jet Bern,Dixon,Febres Cordero,SH, Ita,Kosower,Maître,Ozeren 2013
- Induced by democratic jet cuts

Poisson Scaling:

$$R_{(n+1)/n} = \frac{\bar{n}}{n+1} \quad \left(\sigma_n = \frac{\bar{n}^n e^{-\bar{n}}}{n!}\right)$$

- Independent emission picture (like soft γ radiation in QED)
- Driven by large emission probability
- Induced by presence of hard jet

Conclusions

- QCD NLO calculations fully automated Corrections can be computed in arbitrary models soon Alwall, Degrande, Duhr, Fuks, Maltoni, Mattelaer, Stelzer,...
- NLO precision for multiple jets in event generators Meaningful uncertainty bands for the first time
- ▶ NNLO is the new frontier, with lots of progress $(pp \rightarrow t\bar{t}, pp \rightarrow jets, pp \rightarrow H+jet)$
- ▶ NNLO+NNLL resummation results for $pp \rightarrow H + 0$ jets
- First results for $pp \rightarrow H$ at N³LO

Anastasiou, Bühler, Duhr, Dulat, Herzog, Mistlberger