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• At the LHC, searches for new physics require jet substructure 
techniques for a large range of models and final states
• Heavy exotic resonances 

• H→bb, heavy Higgs 

• Vector boson scattering

• anomalous gauge couplings

• High jet multiplicity SUSY

• etc...

• As objects become more boosted, jet structure techniques 
become a necessity to identify certain new physics signatures

• In addition, jet structure tools can improve performance of jets --
i.e. pileup mitigation, distinguishing quark and gluon jets

• Requires a deep understanding of perturbative QCD 

B Signal Region Acceptance

Figure 7 shows the signal region acceptance curves shown for the resolved and merged signal region

selections separately for the electron and muon channels. This is computed as a function of the truth

G∗ → ZZ signal and shows how the resolved selection dominates at low mass with the merged selection
dominating the acceptance starting at ∼ 1000 GeV.
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Figure 7: Signal acceptance for aG∗ → ZZ signal as a function of the generatedG∗ mass for the electron
(a) and muon (b) channels for the resolved and merged selections.
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Jet Declustering

Jet Shapes

Matrix−Element

Seymour93

YSplitter

Mass−Drop+Filter

JHTopTagger TW

CMSTopTagger

N−subjettiness (TvT)

CoM N−subjettiness (Kim)

N−jettiness

HEPTopTagger
(+ dipolarity)

Trimming

Pruning

Planar Flow

Twist

ATLASTopTagger

Templates

Shower Deconstruction

Qjets

Multi−variate tagger

ACF

apologies for omitted taggers, arguable links, etc.

from Gavin Salam

In recent years, several techniques and applications proposed by theorists.

Experiments are now adopting these techniques and applying them in many ways.
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contents

• Properties of “background” quark and gluon jets in pQCD
• Parton shower modeling at H1, CMS, ATLAS

• Jet structure observables at CMS and ATLAS in inclusive 
dijet and V+jet QCD processes

• Searches employing jet structure observables from CMS 
and ATLAS
• Merged W and Z bosons

• Merged top quarks

• Boosted non-SM particles
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inclusive jet structure studies
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parton showering and pQCD
jet mass and grooming

more substructure observables
identifying pileup jets 

quark and gluon jet comparisons
g to bbar identification
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1 Introduction

Deep-inelastic scattering (DIS) processes at the ep collider HERA can access small values of
Bjorken-x at low four momentum transfers squared Q2 of a few GeV2. In the region of low x,
characterised by high densities of gluons and sea quarks in the proton, the parton interaction
with the virtual photon may originate from a cascade of partons emitted prior to the interaction
as illustrated in figure 1. In perturbative Quantum Chromodynamics (QCD) such multi-parton
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Figure 1: Generic diagram for deep-inelastic ep scattering at small x. The transverse momenta
of the emitted gluons are labeled as pT,i, while the proton longitudinal momentum fractions and
the transverse momenta carried by the propagating gluons are denoted by xi and kT,i, respec-
tively.

emissions are described only within certain approximations valid in restricted phase space re-
gions. At sufficiently large Q2 and not too small x the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) [1] evolution equation is expected to be a good approximation. The DGLAP
equation corresponds to a strong ordering of the transverse momenta of the propagator partons,
kT,i , with respect to the proton direction, which implies strong ordering of the transverse mo-
menta of the emitted partons, pT,i ! pT,i+1, in the parton cascade from the proton towards
the virtual photon. At small x the DGLAP approximation is expected to become inadequate
and the Balitsky-Fadin-Kuraev-Lipatov (BFKL) [2] scheme may be more appropriate, which
has no ordering in kT of the partons along the ladder. The Ciafaloni-Catani-Fiorani-Marchesini
(CCFM) evolution [3] aims to unify the DGLAP and BFKL approaches. It introduces angular
ordering of gluon emissions to implement coherence effects. At small x the CCFM evolution
equation is almost equivalent to the BFKL approach, while it reproduces the DGLAP equations
for sufficiently large x and Q2.

Measurements of the proton structure function F2(x,Q2) [4] are well described by the Next-
to-Leading-Order (NLO) or Next-to-Next-to-Leading Order (NNLO) DGLAP evolution [5–8],

4

Study performed from 
5 GeV2 < Q2 < 100 GeV2

10-4 < x < 10-2

Eur. Phys. J. C73 (2013) 2406 

In deep inelastic ep scattering, charged particle pT spectra 
at low x and high Q2 a good probe of parton dynamics

• Tests of parton evolution 
models: DGLAP, BKFL, 
CCFM 

• Many generators and 
several tunes studied

• Standard DGLAP, LHC-like 
(Rapgap, Herwig++) does 
not do well at high pT

• Color dipole model in 
Djangoh gives best 
agreement over all η and 
pT
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Figure 5: Charged particle density as a function of η∗ for (a) p∗T < 1 GeV for (b)
1 < p∗T < 10 GeV compared to DJANGOH, RAPGAP, Herwig++ and CASCADE Monte Carlo
predictions.
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Figure 5: MC predictions for the b distribution from PYTHIA 6, with and without color coher-
ence effects in the first branching of the initial state and final state-showers, compared to the
measurement.
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10 ATLAS: Measurement of kT splitting scales in W ! `⌫ events at
p
s = 7 TeV
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Fig. 6. Distributions of
p
d0 (top) and

p
d1 (bottom) in the W ! e⌫ (left) and W ! µ⌫ (right) channels, shown at particle

level. The data (markers) are compared to the predictions from various MC generators, and the shaded bands represent the
quadrature sum of systematic and statistical uncertainties on each bin. The histograms have been normalised to unity.

8 Conclusions

A first measurement of the kT cluster splitting scales in
W boson production at a hadron–hadron collider has been
presented. The measurement was performed using the 2010
data sample from pp collisions at

p
s = 7 TeV collected

with the ATLAS detector at the LHC. The data corre-
spond to approximately 36 pb�1 in both the electron and
muon W -decay channels.

Results are presented for the four hardest splitting
scales in a kT cluster sequence, and ratios of these splitting
scales. Backgrounds were subtracted and the results were
corrected for detector e↵ects to allow a comparison to dif-
ferent generator predictions at particle level. A weighted
combination was performed to optimise the precision of
the measurement. The dominant systematic uncertainties
on the measurements originate from the cluster energy
scale, pileup and the unfolding procedure.

The degree of agreement between various Monte Carlo
simulations with the data varies strongly for di↵erent re-
gions of the observables. The hard tails of the distributions
are significantly better described by the multi-leg genera-
tors Alpgen+Herwig and Sherpa, which include exact
tree-level matrix elements, than by the NLO+PS genera-
tors Mc@Nlo and Powheg. This also holds true for the
hardest clustering,

p
d0, even though it is formally pre-

dicted at the same QCD leading-order accuracy by all of
these generators.

In the soft regions of the splitting scales, larger varia-
tions between all generators become evident. The genera-
tors based on the Herwig parton shower provide a good
description of the data, while the Sherpa and Powheg+
Pythia predictions do not reproduce the soft regions of
the measurement well.

CMS-PAS-SMP-12-010, Eur. Phys. J. C, 73 5 (2013) 2432

Highlighting two recent LHC studies on pQCD

kT clustering algorithm splitting scales in W+jet 
events compared against many MC models

Tests of color coherence in 
multijet events, correlations 

between 2nd and 3rd jet

H1, CMS, ATLAS pQCD results fed back into parton shower tunes.
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CMS/ATLAS jet structure

• Inclusive jet structure measurements in dijets and V+jets 
improve understanding of pQCD and backgrounds for searches

• Gives insight into parton shower modeling

• Studies performed for large-R jets (R > 0.6) -- 
improved acceptance for new particle searches

• Typically “search” observables examined: 

• Primary observable: jet mass

• Several additional observables and algorithms separate 
signal from background

8
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observables

• Jet mass is most discriminant observable 
for heavy objects

• Grooming: a procedure to remove soft 
radiation and pileup contributions to jet;
used to improve background rejection

• Additional observables and algorithms 
provide further background rejection

• Correlations with jet mass important

• A few presented today, many explored 
by experimentalists

• i.e. N-subjettiness

9
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Figure 4: Left: Decay sequences in (a) tt and (c) dijet QCD events. Right: Event displays for
(b) top jets and (d) QCD jets with invariant mass near mtop. The labeling is similar to Fig. 1,
though here we take R = 0.8, and the cells are colored according to how the jet is divided into
three candidate subjets. The open square indicates the total jet direction, the open circles indicate
the two subjet directions, and the crosses indicate the three subjet directions. The discriminating
variable τ3/τ2 measures the relative alignment of the jet energy along the crosses compared to the
open circles.

a b jet and a W boson, and if the W boson decays hadronically into two quarks, the top jet

will have three lobes of energy. Thus, instead of τ2/τ1, one expects τ3/τ2 to be an effective

discriminating variable for top jets. This is indeed the case, as sketched in Figs. 4, 5, 6,

and 7.

– 7 –
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CMS/ATLAS inclusive jet structure
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CMS/ATLAS inclusive jet structure
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Phase space is well-covered by experiments
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For visualization:
N.B. stat. err. only
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more quark jets

more gluon jets

• Analysis of 7 TeV ATLAS/CMS data 
for dijet and V+jet events

• Quark and gluon jets have 
different properties (more later)

• Probe several different jet radii and 
jet finding algorithms

• Study jet mass and grooming 
algorithms as well as other jet 
structure observables

• Provide detector-unfolded jet mass 
distributions for comparison against 
simulation
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For visualization:
N.B. stat. err. only
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more quark jets

more gluon jets

• Analysis of 7 TeV ATLAS/CMS data 
for dijet and V+jet events

• Quark and gluon jets have 
different properties (more later)

• Probe several different jet radii and 
jet finding algorithms

• Study jet mass and grooming 
algorithms as well as other jet 
structure observables

• Provide detector-unfolded jet mass 
distributions for comparison against 
simulation

trimmed jet mass
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di↵erent pT bins.
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FIG. 7. The jet width distributions for leading pT, anti-kt R = 0.6 (left) and R = 1.0 (right) jets in the full 2010 data set,
corrected for pileup and corrected to particle level.

Comparison of unfolded distributions against MC
jet mass, kT splitting scale, N-subjettiness, width, 

eccentricity, angularity, planar flow examined

• Both experiments find reasonable agreement for 
both Herwig and Pythia -- not a given!

• Agreement depends on observable and tunes;
Herwig++ tends to do a bit better than Pythia for 
jet mass
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FIG. 6. The jet mass distributions for leading pT, anti-kt R = 0.6 (left) and R = 1.0 (right) jets in the full 2010 data set,
corrected for pileup and corrected to particle level. The data are compared to various tunes of Pythia 6 and Pythia 8 (top),
Herwig++ 2.4.2 and 2.5.1 (center) and Pythia AUET2B with and without PowHeg (bottom). The eikonal approximation
of NLO QCD for quark and gluon jets is also included for the R = 1.0 case (right, bottom). The shaded bands indicate the
sum of statistical and systematic uncertainties.
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in other grooming procedures (⇠30%) due to the strict mass-drop requirement, which is

often not met for jets without boosted object substructure.
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Figure 26. Fractional mass resolution comparing the various grooming algorithms (with labels
defined in table 3) for the leading-pjet

T

jet in the range 500 GeV  pjet

T

< 600 GeV in dijet events,
simulated with POWHEG+PYTHIA. Nominal refers to jets before grooming is applied. Various
ranges of the average number of interactions (hµi) in the events are shown. The uncertainty on the
width of the Gaussian fit is indicated by the error bars.

A summary of the fractional mass resolution for jets before and after grooming in

the presence of various pile-up conditions is shown in figure 26. Trimming in both anti-k
t

and C/A jets reduces the dependence of the jet mass on pile-up (spread in the points)

compared to the ungroomed jet, as does the mass-drop filtering procedure in the case of

C/A jets, while pruning has little impact. In all cases, no pile-up subtraction is applied

to the ungroomed jet kinematics. In particular, the trimming parameters f
cut

= 0.03 and

0.05 slightly outperform the looser f
cut

= 0.01 setting in events with a mean number of

interactions greater than 12. They also exhibit a significantly reduced overall variation

between various instantaneous luminosities.

Based on the above comparisons of mass resolution in di↵erent pjet
T

ranges and under

various pile-up conditions, two configurations, trimmed anti-k
t

jets (f
cut

= 0.05, R
sub

=

0.3) with R = 1.0 and filtered C/A jets (µ
frac

= 0.67) with R = 1.2, are chosen for detailed

comparisons between data and simulation and are presented in section 5.2.

5.1.2 Jet mass resolution for simulated signal events

Figures 27 and 28 show the fractional mass resolution for the two-pronged and three-

pronged cases, respectively. The mass-drop filtering algorithm is shown only for the simu-

lated two-pronged signal events with C/A jets. In the two-pronged case, as for the case of

jets in the inclusive jet events shown in figure 25, the C/A mass-drop filtering algorithm
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Working points in scan of 
grooming parameters

Groom to reduce pileup effects, especially for large-R jets
Scans in grooming parameter space probe jet structure and 

pileup characteristics

choose grooming parameters 
to keep mass resolution 
constant versus pileup
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3 GeV/N
PV

. The leading-pjet
T

jets in the Z 0 sample are typically entirely composed of fully

hadronic boosted top-quark decays contained in a single jet. The mass reconstruction in

this case proceeds as usual (four-momentum recombination) and the mass distribution is
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identifying pileup jets
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• Pileup jets are several low energy jets 
from pileup vertices accumulating on 
each other

• Certain jet substructure variables are 
found to separate PU jets from real jets 

• Fraction of jet pT from charged tracks 
coming from primary vertex 
{CMS = β, ATLAS = Jet vertex fraction}

• Jet width, shapes

• Charged track multiplicity

• Successfully deployed in Hττ analysis for 
stabilizing jet vetoes versus pileup

“real”

“pileup”

12/06/12  5

Critical Variables (Jet id MVA/cuts)
● Jet Shapes

● Multiplicities

● # of charged candidates (|η| < 2.75)

● # of neutral candidates

● Vertex compatabilitiy (|η| < 2.75)

● β = Σ p
T
(tracks |Δz| < 0.2 to PV)/total p

T

● β*= Σ p
T
(tracks |Δz| < 0.2 to other PV)/total p

T

11

The most powerful handle
 In the region covered by tracker region, the most powerful discriminant 

 are tracking information.
 Well summarized by the beta variable

 Extremely good discrimination up to |h| = 2.5

Residual information up to |h|=2.75

β=
∑Δ z (track , v0 )<0.2cm

pT
cand

∑ pT
cand

20 < p
T 
< 30

TK HEin

Z → µµ

H→ττ

CMS-PAS-HIG-12-043
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quark and gluon comparisons

• Quark- and gluon-initiated jets have 
different properties

• Many search applications for 
distinguishing quarks and gluon jets

• Hadronically decaying vector bosons

• monojet, dijet searches

• SUSY searches with high quark jet 
multiplicity

• Jet width and number of charged 
tracks provide good discrimination

19
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ATLAS-CONF-2012-138

Example: for 50% quark jet efficiency, 
we can reject 90% gluon jets

More discriminant at higher pTs
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quark and gluon comparisons

20

• Extract in-situ data distributions of quark and gluons

• Pythia and Herwig++ describe quark jets similarly, but larger 
difference for gluon jets

• Herwig++ seems to describes gluons better, particularly for ntrk

ATLAS-CONF-2012-138

Quark-Gluon Tagging Templates

Finally, Some Data (Comparing to Pythia)
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• But data disagrees with Pythia in ntrk , and in a way that leads to
worse performance!

• Track Width is a little better, though bad again at high pT
M. Swiatlowski (SLAC) Jet Substructure and Tagging with Tracks 23 April, 2012 12 / 39

6 Study of variables for light-quark and gluon jet discrimination

The differences between light quarks and gluons lead to differences in observable final state jet properties
on average. Jets initiated by gluons are expected to be broader, with more low-pT particles than those ini-
tiated by light quarks. The jet width and number of tracks have already been used to measure the average
flavor fractions in different data samples [2], and they have been identified as powerful discriminators for
the purpose of understanding partonic flavor in previous studies [3].

The significant pile-up at the LHC in 2011 means that any measurement of jet properties may be
affected by particles from other interactions. Calorimetric properties are particularly sensitive to the
effects of pile-up. However, since charged particle tracks can be associated to a specific proton-proton
collision via vertex association, jet properties calculated from tracks associated to one primary vertex
are inherently less sensitive to pile-up. Thus, for this study, the properties used to distinguish different
classes of jets are the number of charged tracks associated to the jet and the jet width, W , defined as

W =
∑

pT,i × ∆Ri
∑

pT,i
, (3)

where the sum is over the tracks associated to the jet, pT,i is the pT of the track, and ∆Ri is the opening
angle in η–φ between the jet axis and the track.

Properties of jets based on tracks depend upon a good description of hadronization and fragmentation.
Although the phenomenological models used in various generators have been tuned to match measure-
ments of correlated properties (such as the fragmentation function and differential jet shapes) [16, 22],
the charged particle spectra within a jet remain difficult to describe. This is illustrated in Figure 2, where
the mean value of each property is shown as a function of pT for PythiaMC11, Pythia Perugia2011 and
Herwig++.
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Figure 2: Average ntrk and track width for light-quark-induced (closed markers) and gluon-induced
(empty markers) jets as a function of the reconstructed jet pT for isolated jets with |η| < 0.8. Results
are shown for Pythia MC11 (black circles), Pythia Perugia2011 (red triangles) and Herwig++ (blue
squares). The error bars represent only statistical uncertainties.

Differences are most significant for the charged particle multiplicity of gluon jets, for which Pythia
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simulation data
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g→bb tagging

• Identify b-jets originating from gluon splitting at small angles

• Reduces backgrounds in b-jet searches and estimating efficiency 
for signatures with double b-tagged jets (i.e. Higgs)

• Identify a b-tagged jet, then use jet structure observables to 
distinguish between single b-jets and merged b-jets

• Jet width, Ntrk, ΔR (max, tracks), τ2

• Very good discrimination power, better at high pTs
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Figure 4: Distribution of track-jet width in jets for single and merged b-jets between 80 GeV to 110 GeV
(left) and 200 GeV to 270 GeV (right).
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Figure 5: Distribution of jet width using topological clusters (left) and tracks (right) for single b-jets in
two bins of number of primary vertices (NPV) for jets between 60 GeV to 80 GeV.
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Figure 8: Distribution of t2 in jets for single and merged b-jets between 80 GeV to 110 GeV (left) and
200 GeV to 270 GeV (right).
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Figure 9: Correlation between t2 and track-jet width (left) and jet track multiplicity and track-jet width
(right) for single and merged b-jets between 80 GeV to 110 GeV.
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Likelihood output
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Figure 12: Distribution of the likelihood output for single and merged b-jets for low, medium and high
pT jets.

8 Double bbb-hadron jet tagging

A discriminant between single b-jets and merged b-jets was built by training a simple likelihood estimator
in the context of the Toolkit for Multivariate Data Analysis, TMVA [28].

A sub-set of the dijet Monte Carlo sample was used for training. After the event and jet selections
were performed, the b-tagged jets with |h | < 2.1 were classified as signal (single b-jets) or background
(merged b). The likelihood training was done in bins of calorimeter jet pT. Signal and background jets
were not weighted by the dijet samples cross-sections to allow the contribution of subleading lower pT
jets from high pT events, and thus increase the statistics of merged jets in the low pT bins. For the
evaluation of the method the same procedure was followed.

As mentioned in the previous section, the following combination of three variables was chosen for
the multivariate analysis:

1. Jet track multiplicity;
2. Track-jet width;
3. DR between the axes of 2 kt subjets within the jet.

The distribution of the likelihood output for single and merged b-jets is shown in Fig. 12 for low, medium
and high transverse momentum jets.

The performance of the tagger in the simulation can be displayed in a plot of rejection (1/ebkg) of
merged b-jets as a function of single b-jet efficiency, where ebkg is the probability that a double b-hadron
jet passes the single b-jet tagger. This is shown in Fig. 13 for the eight bins of jet pT mentioned in
section 5. The performance improves with pT:

• pT > 40 GeV: rejection above 8 at 50% eff.
• pT > 60 GeV: rejection above 10 at 50% eff.
• pT > 200 GeV: rejection above 30 at 50% eff.

The rejection of merged jets attained as a function of pT for the 50% and 60% single b-jet effi-
ciency working points are summarized in Table 1, together with their relative statistical error. These are
propagated from the Poisson fluctuations of the number of events in the merged and single b distribu-
tions. The error is slightly lower for the 60% efficiency working point because a higher efficiency allows
for a greater number of Monte Carlo events to measure the performance.

13

ATLAS-CONF-2012-100
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searches with jet structure

22

merged vector bosons
merged top quarks

non-SM boosted objects

An emphasis will be placed on techniques instead of limits.
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identifying boosted vector bosons
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• In all cases, main discriminating variable is jet 
mass, sometimes cut on additional variables

• Groomed jet mass improves background 
rejection in searches

• Jet-finding with a standard or large radius 
algorithm depending on search phase space

• Cut on the mass drop, μ = m1/m

• m1 is mass of highest mass subjet

• subjets defined by un-clustering last step

• Cut on N-subjettiness, τ2/τ1 
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validating merged W bosons 

24

tagging with mass drop 

• Validation using merged W bosons  
in semi-leptonic tt sample

• Clear observation of merged W’s 

• Used as a valuable sample for 
understanding jet mass scale and 
resolution

• Statistics are becoming sufficient 
for estimating data-driven 
efficiencies 

CMS-PAS-B2G-13-005, CMS-PAS-HIG-13-008
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searches with boosted vector bosons
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RS Gravitons → VV Limits
• Compilation of currently 

most stringent limits for RS 
gravitons in the ZZ/WW 
channels

• Boosted topologies play a 
fundamental role in searches 
for heavy resonances

- 4 of the 5 lines shown are 
from analysis with one or 
two vector bosons decaying 
into a single massive jet

21

Monday, July 23, 2012

Combination of CMS searches 
for RS1 Graviton in di-boson final states

4 of 5 analyses using jet 
substructure observables
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Figure 5: The two kinematic distributions of ∆φ( j1, j2) (a) and m( j1, j2) (b) for the combined electron

and muon channels used to define the resolved signal region. Spectra (scaled up by a factor 102) from an
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identifying merged top quarks
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• Many algorithms for identifying top quarks 

• Currently implemented in public analyses

• Tagging using kT-splitting scale: require 
the last kT clustering step to be hard

• HEP Top Tagger: decluster jet into 
subjets, apply kinematic constraints on all 
mass pairings: {m12, m23, m13}

• Template Top Tagger: test compatibility 
of jet with O(300k) top decay templates

• CMS Top Tagger: decluster jet into 
subjets, apply kinematic constraints on 
subjets

• Not the end of the story, existing algorithms 
to be further optimized and more to be 
tested
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Figure 7: The first kt splitting scale,
√

d12 of the hadronic top jet after the boosted selection, except the

requirement
√

d12 > 40 GeV. The shaded areas indicate the total systematic uncertainties.
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Figure 8: The tt̄ invariant mass spectra for the two channels and the selection methods. The smaller plots

show the data/MC ratio. The shaded areas indicate the total systematic uncertainties.
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• With 8 TeV data, enough semi-leptonic tt 
events to validate boosted tops at high pT

• Search signal regions validation show good 
agreement for data vs. simulation

• B-tagging in boosted environments helps to 
further reduce multijet backgrounds

Phys. Lett. B 718 (2013)1284-1302, ATLAS-CONF-2012-136, CMS-PAS-B2G-13-005 
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Figure 7: The first kt splitting scale,
√

d12 of the hadronic top jet after the boosted selection, except the

requirement
√

d12 > 40 GeV. The shaded areas indicate the total systematic uncertainties.
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Figure 8: The tt̄ invariant mass spectra for the two channels and the selection methods. The smaller plots

show the data/MC ratio. The shaded areas indicate the total systematic uncertainties.
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• Boosted tops currently in searches for tt 
resonances both in all-hadronic and 
semi-leptonic channel

• Many additional applications:
3rd generation final states (W’, b’, etc.) 
Moderately boosted tops in SUSY stop 
searches

Phys. Lett. B 718 (2013)1284-1302, ATLAS-CONF-2012-136, CMS-PAS-B2G-13-005 HEP Top Tagger

Template Top Tagger
CMS Top Tagger
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• First example: exotic resonance search: 
g→qq→qqq, pair produced RPV gluinos

• For light gluinos, decaying quarks can be 
highly collimated

• Use large radius jets with high pT

• N-subjettness, τ3/τ2, variable used to 
identify jets with 3 subjets

• New phenomenological ideas for low MET 
SUSY with high jet multiplicities using jet 
structure
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Figure 3. In the lower mass signal region (SR1), the distributions of (a) jet ⌧
32

for the two leading
jets in each event with mjet > 60 GeV and (b) jet mass (mJ1 and mJ2) for jets with ⌧

32

< 0.7 are
shown for the data, the signal mg̃ = 100 GeV, and the background MCs for comparison. In the
higher mass signal region (SR2), the same distributions of (c) ⌧

32

and (d) jet mass are shown, but
in this case for mg̃ = 300 GeV. In each case, the data are compared to the two MC models used to
estimate the correlation correction factor, ↵, for the background extrapolation.

setting for improving the mass resolution in the presence of pile-up [65, 81]. The remaining

constituents form the trimmed jet. The invariant mass of these large-R, trimmed jets is

then calculated from the energies and momenta of the constituents contained within the

jet after the trimming procedure.

Events containing pair produced boosted gluinos that decay into three collimated

quarks are characterised by the presence of two massive large-R jets that each contain sub-
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setting for improving the mass resolution in the presence of pile-up [65, 81]. The remaining

constituents form the trimmed jet. The invariant mass of these large-R, trimmed jets is

then calculated from the energies and momenta of the constituents contained within the

jet after the trimming procedure.
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summary

• Large amount of experimental results studying jet structure

• probes of pQCD

• inclusive jet structure measurements 

• searches with boosted objects in wide range of physics 
models

• Many new experimental results expected at
the BOOST 2013 conference in August

• The 7 TeV and 8 TeV LHC data already proven to be an 
excellent dataset for jet structure studies; 
Relevance will only increase for the upcoming 13 TeV run!
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summary

• Large amount of experimental results studying jet structure

• probes of pQCD

• inclusive jet structure measurements 

• searches with boosted objects in wide range of physics 
models

• Many new experimental results expected at
the BOOST 2013 conference in August

• The 7 TeV and 8 TeV LHC data already proven to be an 
excellent dataset for jet structure studies; 
Relevance will only increase for the upcoming 13 TeV run!
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charged particle production at H1

• In deep inelastic ep scattering, charged 
particle pT spectra at low x and high Q2 a 
good probe of parton dynamics

• Tests of parton evolution models: DGLAP 
(large Q, moderate x), BKFL (low x), and 
CCFM (unifying over full range)

• Compare against different MC programs

• Rapgap*, DGLAP LL approximations

• Djangoh*/Ariadne, BKFL-like

• Cascade*, CCFM 

• Herwig++, DGLAP-like with angular 
ordering and cluster fragmentation 
model

33

1 Introduction

Deep-inelastic scattering (DIS) processes at the ep collider HERA can access small values of
Bjorken-x at low four momentum transfers squared Q2 of a few GeV2. In the region of low x,
characterised by high densities of gluons and sea quarks in the proton, the parton interaction
with the virtual photon may originate from a cascade of partons emitted prior to the interaction
as illustrated in figure 1. In perturbative Quantum Chromodynamics (QCD) such multi-parton

e

γ

q

q

p
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Q
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..

.

’e d

k nT
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2
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Figure 1: Generic diagram for deep-inelastic ep scattering at small x. The transverse momenta
of the emitted gluons are labeled as pT,i, while the proton longitudinal momentum fractions and
the transverse momenta carried by the propagating gluons are denoted by xi and kT,i, respec-
tively.

emissions are described only within certain approximations valid in restricted phase space re-
gions. At sufficiently large Q2 and not too small x the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) [1] evolution equation is expected to be a good approximation. The DGLAP
equation corresponds to a strong ordering of the transverse momenta of the propagator partons,
kT,i , with respect to the proton direction, which implies strong ordering of the transverse mo-
menta of the emitted partons, pT,i ! pT,i+1, in the parton cascade from the proton towards
the virtual photon. At small x the DGLAP approximation is expected to become inadequate
and the Balitsky-Fadin-Kuraev-Lipatov (BFKL) [2] scheme may be more appropriate, which
has no ordering in kT of the partons along the ladder. The Ciafaloni-Catani-Fiorani-Marchesini
(CCFM) evolution [3] aims to unify the DGLAP and BFKL approaches. It introduces angular
ordering of gluon emissions to implement coherence effects. At small x the CCFM evolution
equation is almost equivalent to the BFKL approach, while it reproduces the DGLAP equations
for sufficiently large x and Q2.

Measurements of the proton structure function F2(x,Q2) [4] are well described by the Next-
to-Leading-Order (NLO) or Next-to-Next-to-Leading Order (NNLO) DGLAP evolution [5–8],

4

Study performed from 
5 GeV2 < Q2 < 100 GeV2

10-4 < x < 10-2

* Hadronization with Lund fragmentation model (Pythia)

Eur. Phys. J. C73 (2013) 2406 
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Additional jet observables explored by ATLAS

kT splitting scales: √d12, kT distance of last clustering step in kT clustering 

N-subjettiness: τN a measure of how many subjets a jet has

Width: small width, pT distributed closer to jet core; close to 1, pT distributed 
near edges

Eccentricity: measures deviation of jet profile from a perfect circle

 Angularity: measures the degree of symmetry in jet energy flow

Planar Flow: measures if a jet is spread evenly over a plane or linearly

Cartoons for the different observables in the additional material
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N-subjettiness
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CMS top tagger
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• Based on the JHU top tagger:
PRL 101/142001 (2008) 
Kaplan et al.

• Cluster jets with CA8 algorithm

• Reverse clustering algorithm to find 
subjets, keep subjets passing following 
criteria
• pTsubjet > 0.05 × pTjet

• dR > 0.4 - 0.004 × pTjet

• Keep original jets with 3 or 4 passing 
subjets
• Jet mass is [100-250] GeV

• Minimum pairwise mass of hardest 3 
subjets, mmin > 50 GeV

original���������	
��������������������  jet

subjet���������	
��������������������  1 subjet���������	
��������������������  2

subjet���������	
��������������������  criteria:
pTsubjet���������	
��������������������  >���������	
��������������������  0.05���������	
��������������������  ×���������	
��������������������  pTjet
dR���������	
��������������������  >���������	
��������������������  0.4���������	
��������������������  -���������	
��������������������  0.004���������	
��������������������  ×���������	
��������������������  pTjet

1 2 3 4

Keep���������	
��������������������  jets���������	
��������������������  with���������	
��������������������  3���������	
��������������������  or���������	
��������������������  4���������	
��������������������  
passing���������	
��������������������  subjets;���������	
��������������������  apply���������	
��������������������  
additional���������	
��������������������  kinematic���������	
��������������������  cuts
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• For identifying moderately boosted tops, CA fat jets (R = 1.5, 1.8) 
with pT > 200 GeV

• Decluster jet keeping subjets that pass the mass drop criterion, 
mj1 > mj2 and mj1 < 0.8×mj until each subjet each subjet has mj,i < 
30 GeV 

• Filter all combinations of triplets of subjets to remove UE/PU 
contributions, keeping 5 hardest filtered consituents to compute 
the jet mass; keep triplet with jet mass closest to mt

• Apply kinematic constraints on all mass pairings: {m12, m23, m13}
8
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Figure 3: Distribution of all events in the arctanm13/m12 vs m23/m123 plane. We show tt̄ (left). W+jets (center) and
pure QCD jets (right) samples. More densely populated regions of the phase space appear in red.

2. for each fat jet, find all hard subjets using a mass drop criterion: when undoing the last clustering of the
jet j, into two subjets j

1

, j
2

with m
j1 > m

j2 , we require m
j1 < 0.8 m

j

to keep j
1

and j
2

. Otherwise, we
keep only j

1

. Each subjet j
i

we either further decompose (if m
ji > 30 GeV) or add to the list of relevant

substructures.

3. iterate through all pairings of three hard subjets: first, filter them with resolution R
filter

=
min(0.3,�R

jk

/2). Next, use the five hardest filtered constituents and calculate their jet mass (for less
than five filtered constituents use all of them). Finally, select the set of three-subjet pairings with a jet
mass closest to m

t

.

4. construct exactly three subjets j
1

, j
2

, j
3

from the five filtered constituents, ordered by p
T

. If the masses
(m

12

,m
13

,m
23

) satisfy one of the following three criteria, accept them as a top candidate:
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with R
min

= 85%⇥m
W

/m
t

and R
max

= 115%⇥m
W

/m
t

. The numerical soft cuto↵ at 0.35 is independent
of the masses involved and only removes QCD events. The distributions for top and QCD events we show
in Fig. 3.

5. finally, require the combined p
T

of the three subjets to exceed 200 GeV.

In step 3 of the algorithm there exist many possible criteria to choose three jets from hard subjets inside a fat
jet. For example, we can include angular information (the W helicity angle) in the selection criterion and select
the smallest �m

t

+A
W

�m
W

+A
h

� cos
h

. In that case, the tagging e�ciency increases, but simultaneously the
fake rate also increases, so to reach the best signal significance we simply select the combination with the best
m

t

. This allows us to apply e�cient orthogonal criteria based on the reconstructed m
W

and on the radiation
pattern later.

In step 4, the choice of mass variables shown in Figure 3 is of course not unique. In general, we know that
in addition to the two mass constraints (m

123

= mrec

t

as well as m
jk

= mrec

W

for one (j, k)) we can exploit one
more mass or angular relation of the three main decay products. Our three subjets j

k

ignoring smearing and
assuming p2

i

⇠ 0 give
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Figure 7: Variation of the mean N-subjettiness ratios (a) h⌧21i and (b) h⌧32i measured in data for anti-kt
jets with R = 1.0 in the range 600  pjet

T < 800 GeV before and after trimming. The error bars indicate
the statistical uncertainty on the mean value in each bin.

3.4 Impact of Pile-up on Signal and Background in the Monte Carlo

In addition to the comparisons between data and MC, and between the various grooming configurations,
a comparison of how grooming impacts signal-like events versus background-like events is crucial.

Figure 9 shows the variation of the average leading jet mass, hmjet
1 i, in the range 600  pjet

T <
800 GeV for ungroomed and trimmed anti-kt, R = 1.0 jets, for both the Z0 ! tt̄ sample and the POWHEG
dijet sample. The average ungroomed leading jet mass in the sample of light quarks and gluons in the
inclusive POWHEG dijet events exhibits a slope of approximately dhmjet

1 i/dNPV ⇡ 3.00 GeV/NPV. The
leading jets in the Z0 sample are typically entirely composed of fully hadronic boosted top quark decays
contained in a single jet. The mass reconstruction in this case proceeds as usual (four-momentum recom-
bination) but the mass distribution is highly peaked near the top quark mass of approximately 175 GeV.
Jets in this peak but without grooming exhibit a slope of roughly dhmjet

1 i/dNPV ⇡ 2.15 GeV/NPV, or
about 30% smaller than in the inclusive jet sample. In the case of trimmed jets, the slopes as a function
of NPV for both signal-like jets and jets in dijet events are consistent with zero.

Most importantly, the average separation in the mean jet mass for signal-like jets in the Z0 sample and
the background represented by the POWHEG QCD dijet sample increases by nearly 50% after trimming
and remains stable across the full range of NPV. The separation shown here is significant since the widths
of the peaks of each of the distributions are also simultaneously narrowed by the grooming algorithm, as
shown in Figure 3. This di↵erential impact of trimming is again due to the design of the algorithm [11]:
soft, wide angle contributions to the jet mass that are ubiquitous in QCD jets are suppressed whereas the
hard components present in a jet with true substructure – as in the case of the top-quark jets here – are
preserved.

13

Examine jet structure observables as function of primary vertices
Grooming jet mass reduces pileup dependence

Can also reduce pileup dependence for other jet structure observables such 
as τ2/τ1 using only groomed jet constituents

ATLAS-CONF-2012-066, JHEP 05 (2013) 090
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• Selection: AK10 jets with pT1 (pT2) > 500 (450) GeV

• Energy flow inside a jet compatibility with top quark decay

• Given a library of ~300k templates, encode the overlap into 
a single observable OV3 (from 0-1)

• Libraries in bins of 100 GeV starting from 450 GeV

• τn is set of templates

• i sums over top-quark decay daughters, σi = Ei/3 is weight factor, 
Etopo is energy of topocluster required to be within ΔR < 0.2

• Selection, make a cut on OV3 > 0.7

Table 1. Total e�ciency (in %) for selecting Z 0 bosons and KK gluons (gKK) that have decayed to
tt̄ pairs. These are the e�ciencies determined by the MC calculations divided by the SM branching
fraction of 46% for both top quarks to decay hadronically. All uncertainties are statistical only.

Model Total E�ciency (%)
HEPTopTagger Template Tagger

Z 0 (0.5 TeV) 0.03± 0.01 –
Z 0 (0.8 TeV) 2.96± 0.08 –
Z 0 (1.0 TeV) 4.76± 0.09 0.48± 0.05
Z 0 (1.3 TeV) 5.67± 0.11 6.37± 0.13
Z 0 (1.6 TeV) 5.40± 0.10 8.13± 0.16
Z 0 (2.0 TeV) 4.44± 0.10 6.26± 0.13

g
KK

(0.7 TeV) 1.70± 0.13 –
g
KK

(1.0 TeV) 4.13± 0.21 0.74± 0.10
g
KK

(1.3 TeV) 5.14± 0.23 5.02± 0.25
g
KK

(1.6 TeV) 4.72± 0.22 6.43± 0.26
g
KK

(2.0 TeV) 4.44± 0.22 5.22± 0.21

6 The Top Template Tagger method

The Top Template Tagger method [13, 14] is based on the concept that an infrared-safe

set of observables can be defined that quantify the overlap between the observed energy

flow inside a jet and the four-momenta of the partons arising from a top-quark decay. An

“overlap function” ranging from 0 to 1 is defined that quantifies the agreement in energy

flow between a given top-quark decay hypothesis (a template) and an observed jet. One

then cycles over a large set of templates chosen to cover uniformly the 3-body phase space

for a top-quark decay at a given p
T

and finds the template that maximises this overlap,

denoted as OV
3

. A requirement of OV
3

> 0.7 is made.

Sets (or “libraries”) of approximately 300,000 templates are generated in steps of top-

quark p
T

of 100 GeV starting from 450 GeV by calculating the parton-level daughters for a

top quark in its rest frame and then boosting the daughters to the p
T

of the given library.

Studies of the top-quark jet tagging e�ciency using MC data and of light quark/gluon jet

rejection observed in the data were used to determine the size of the p
T

steps and the min-

imum number of templates for each library that maximise the top-quark tagging e�ciency

while retaining high rejection against light quark/gluon jets. For each jet candidate, the

overlap function is defined as

OV
3

= max
{⌧n}

exp

"
�

3X

i=1

1

2�2

i

⇣
Ei �

X

�R(topo,i)

<0.2

E
topo

⌘
2

#
, (6.1)

where {⌧n} is the set of templates defined for the given jet p
T

, Ei are the parton energies of

the top-quark decay daughters for the given template, E
topo

is the energy of a topocluster,

– 9 –
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