Synergies with Nuclear Physics

M.J. Ramsey-Musolf Wisconsin-Madison

U Mass-Amherst

Lepton Photon, June 2013

Outline

- I. The Nuclear Physics Context
- II. EDMs & the Origin of Matter
- III. PV: BSM "diagnostic"
- IV. Summary

Nuclear Physics Today

Hadron structure & dynamics: "cold QCD"

Rare isotopes: nuclear structure & astrophysics

Fundamental symmetries & neutrinos: "Intensity Frontier"

Relativistic heavy ions: "hot & dense QCD"

Nuclear Physics Today

Hadron structure & dynamics: "cold QCD"

Rare isotopes: nuclear structure & astrophysics

Fundamental symmetries & neutrinos: "Intensity Frontier"

Relativistic heavy ions: "hot & dense QCD"

Scientific Questions

2007 NSAC LRP:

- What are the masses of neutrinos and how have they shaped the evolution of the universe?
- Why is there more matter than antimatter in the present universe?
- What are the unseen forces that disappeared from view as the universe cooled?

Four Components **

EDM searches: BSM CPV, Origin of Matter	<i>Ονββ decay searches:</i> Nature of neutrino, Lepton number violation, Origin of Matter
<i>Electron & muon</i>	Radioactive decays
prop's & interactions:	& other tests
<i>SM Precision Tests, BSM</i>	SM Precision Tests, BSM
<i>"diagnostic" probes</i>	"diagnostic" probes

Four Components

EDM searches: BSM CPV, Origin of Matter	<i>Ονββ decay searches:</i> Nature of neutrino, Lepton number violation, Origin of Matter
Electron & muon	Radioactive decays
prop's & interactions:	& other tests
SM Precision Tests, BSM	SM Precision Tests, BSM
"diagnostic" probes	"diagnostic" probes

EDMs & PV Electron Scattering

BSM Signal ~
$$(v/\Lambda)^2$$

EDMs & PV Electron Scattering

BSM Signal ~
$$(v/\Lambda)^2$$

EDMs & the Origin of Matter

- I. The experimental situation
- II. Theoretical interpretation: multiple scales & multiple systems
- III. Implications for baryogenesis

EDM Experiments

PHYSICAL REVIEW

VOLUME 108, NUMBER 1

OCTOBER 1, 1957

Experimental Limit to the Electric Dipole Moment of the Neutron

J. H. SMITH,* E. M. PURCELL, AND N. F. RAMSEY Oak Ridge National Laboratory, Oak Ridge, Tennessee, and Harvard University, Cambridge, Massachusetts (Received May 17, 1957)

An experimental measurement of the electric dipole moment of the neutron by a neutron-beam magnetic resonance method is described. The result of the experiment is that the electric dipole moment of the neutron equals the charge of the electron multiplied by a distance $D = (-0.1 \pm 2.4) \times 10^{-20}$ cm. Consequently, if an electric dipole moment of the neutron exists and is associated with the spin angular momentum, its magnitude almost certainly corresponds to a value of D less than 5×10^{-20} cm.

EDM Experiments

PHYSICAL REVIEW

VOLUME 108, NUMBER 1

OCTOBER 1, 1957

Experimental Limit to the Electric Dipole Moment of the Neutron

J. H. SMITH,* E. M. PURCELL, AND N. F. RAMSEY Oak Ridge National Laboratory, Oak Ridge, Tennessee, and Harvard University, Cambridge, Massachusetts (Received May 17, 1957)

An experimental measurement of the electric dipole moment of the neutron by a neutron-beam magnetic resonance method is described. The result of the experiment is that the electric dipole moment of the neutron equals the charge of the electron multiplied by a distance $D = (-0.1 \pm 2.4) \times 10^{-20}$ cm. Consequently, if an electric dipole moment of the neutron exists and is associated with the spin angular momentum, its magnitude almost certainly corresponds to a value of D less than 5×10^{-20} cm.

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	3.1 x 10 ⁻²⁹	10 ⁻³³	10 ⁻²⁹
YbF	1.8 x 10 ⁻²¹ **	10 ⁻³²	10 ⁻²²
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent: 10.5 x 10⁻²⁸

(thanks: T. Chupp)

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	3.1 x 10 ⁻²⁹	10 ⁻³³	10 ⁻²⁹
YbF	1.8 x 10 ⁻²¹ **	10 ⁻³²	10 ⁻²²
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent: 10.5 x 10⁻²⁸

(thanks: T. Chupp)

Mass Scale Sensitivity

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	3.1 x 10 ⁻²⁹	10 ⁻³³	10 ⁻²⁹
YbF	1.8 x 10 ⁻²¹ **	10 ⁻³²	10 ⁻²²
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent: 10.5 x 10⁻²⁸ (thanks: T. Chupp)

Not shown: muon

Why Multiple Systems ?

Why Multiple Systems ?

Multiple sources & multiple scales

Effective Operators

$$\mathcal{L}_{\mathrm{CPV}} = \mathcal{L}_{\mathrm{CKM}} + \mathcal{L}_{\bar{\theta}} + \mathcal{L}_{\mathrm{BSM}}^{\mathrm{eff}}$$

$$\mathcal{L}_{\mathrm{BSM}}^{\mathrm{eff}} = \frac{1}{\Lambda^2} \sum_i \alpha_i^{(n)} \, O_i^{(6)}$$

EDM: γff CEDM: gff

Weinberg ggg:

Four fermion

udHH

BSM Origins

udHH

BSM Origins

23

Why Multiple Systems ?

Multiple sources & multiple scales

Exploit complementary sensitivity to search for & identify CPV

TI, YbF, ThO...

$$d_f = -(1.13 \times 10^{-3} \, e \, \mathrm{fm}) \left(\frac{v}{\Lambda}\right)^2 \, Y_f \, \delta_f$$

$$C_{S}^{(0)} = -g_{S}^{(0)} \left(\frac{v}{\Lambda}\right)^{2} \operatorname{Im} C_{eq}^{(-)}$$

TI, YbF, ThO...

$$d_f = -(1.13 \times 10^{-3} \, e \, \text{fm}) \left(\frac{v}{\Lambda}\right)^2 \, Y_f \underbrace{\delta_f}$$

$$C_{S}^{(0)} = -g_{S}^{(0)} \left(\frac{v}{\Lambda}\right)^{2} \left(\operatorname{Im} C_{eq}^{(-)}\right)$$

TI, YbF, ThO....

$$d_f = -(1.13 \times 10^{-3} \, e \, \text{fm}) \left(\frac{v}{\Lambda}\right)^2 \, Y_f \underbrace{\delta_f}$$

Tl, YbF, ThO...

$$C_{S}^{(0)} = -g_{S}^{(0)} \left(\frac{v}{\Lambda}\right)^{2} \left(\operatorname{Im} C_{eq}^{(-)}\right)$$

~ 100 x greater sensitivity to $C_{\rm eq}$ than to $\delta_{\rm e}$

Paramagnetic Global Fit

Diamagnetic Systems: Schiff Moments

Atomic effect from nuclear finite size: Schiff moment Neutral atoms: nuclear EDM invisible to external probe

Diamagnetic Systems: Schiff Moments

Atomic effect from nuclear finite size: Schiff moment

Schiff moment, MQM,...

Diamagnetic Systems: Schiff Moments

Atomic effect from nuclear finite size: Schiff moment

Nuclear Schiff Moment

Nuclear Enhancements

Schiff moment, MQM,...

Nuclear polarization: mixing of opposite parity states by $H^{TVPV} \sim 1 / \Delta E$

Nuclear Schiff Moment

Nuclear Enhancements: Octupole Deformation

Opposite parity states mixed by H^{TVPV}

"Nuclear amplifier"

Nuclear polarization: mixing of opposite parity states by $H^{TVPV} \sim 1 / \Delta E$

EDMs of diamagnetic atoms (²²⁵Ra)

Thanks: J. Engel

EDMs & Baryogenesis

- B violation (sphalerons)
- C & CP violation (BSM)
- Out-of-equilibrium or CPT violation (BSM)

EDMs & Baryogenesis

- B violation (sphalerons)
- C & CP violation (BSM)
- Out-of-equilibrium or CPT violation (BSM)

Electroweak baryogenesis

- Testable
- Was BAU produced ~ 10ps after Big Bang or earlier ?

EDMs & Baryogenesis

• B violation (sphalerons)

- C & CP violation (BSM)
- Out-of-equilibrium or CPT violation (BSM)

Electroweak baryogenesis

- Testable
- Was BAU produced ~ 10ps after **Big Bang or earlier ?**
 - Illustrative case: MSSM
 - Standard Model
 - **BSM**

One-loop EDMs preclude MSSM baryogenesis

One-loop EDMs preclude MSSM baryogenesis

Universal gaugino phases Arg(µM_ib^{*}) = Arg(µM_jb^{*})

Ritz CIPANP 09 + Cirigliano, R-M, Tulin, Lee '06

Heavy sfermions: LHC consistent & suppress 1-loop EDMs

Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

Heavy sfermions: LHC consistent & suppress 1-loop EDMs

Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

PV Electron Scattering: BSM Diagnostic

- I. The experimental situation
- II. The Standard Model: $\sin^2 \theta_W$
- III. BSM

Parity-Violation & Weak Charges

Parity-Violating electron scattering

$$A_{PV} = \frac{N_{\uparrow\uparrow} - N_{\uparrow\downarrow}}{N_{\uparrow\uparrow} + N_{\uparrow\downarrow}} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \Big[Q_W + F(Q^2, \theta) \Big]$$

Atomic parity-violation

$$E_1^{PV} / \beta = i \ e \ \mathcal{M} \times 10^{-11} a_0 \left(Q_W / N \right) / \beta$$

Parity-Violation Electron Scattering

PVeS Experiment Summary

Parity-Violation Electron Scattering

PVeS Experiment Summary

Parity-Violation Electron Scattering

PVeS Experiment Summary

Parity-Violation & Weak Charges

Parity-Violating electron scattering

$$A_{PV} = \frac{N_{\uparrow\uparrow} - N_{\uparrow\downarrow}}{N_{\uparrow\uparrow} + N_{\uparrow\downarrow}} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left[Q_W + F(Q^2, \theta) \right]$$

Atomic parity-violation

$$E_1^{PV} / \beta = i \ e \ \mathcal{M} \times 10^{-11} a_0 \left(Q_W \right) N / \beta$$

Weak Mixing in the Standard Model

Deviations: BSM "Diagnostic"

55

Summary

NP studies of fundamental symmetries & neutrinos:

- A growing pillar of the global NP program
- Highly synergistic with HEP & a cornerstone of the Intensity Frontier
- Significant potential for discovery and insight (origin of matter, BSM diagnostic)
- Rich opportunities for future interplay between NP and HEP communities

Thanks !

- Lepton Photon organizers
- T. Chupp, K. Kumar

Further reading:

- EDM: 1303.2371, hep-ph/0504231
- PV: 1302.6263, 1303.5522
- Project X: 1306.5009

Back Up Slides

AMO Global Analysis

- Dominant operators: e EDM, $C_{S}^{(0)} \sim Im C_{eq}^{(-)}$
- Includes ¹⁹⁹Hg w/ C_S⁽⁰⁾ no Schiff moment !
- TI & YbF only: $|d_e| < 0.89 \times 10^{-26} e cm$

Flavored CPV & EWB

CPV & 2HDM

Flavored CPV & EWB

CPV & 2HDM

$$\mathcal{L} = -y_{ij}^u \bar{Q}^i (\epsilon H_u^{\dagger}) u_R^j - y_{ij}^d \bar{Q}^i H_u d_R^j$$
$$-\lambda_{ij}^u \bar{Q}^i H_d u_R^j - \lambda_{ij}^d \bar{Q}^i (\epsilon H_d^{\dagger}) d_R^j + h.c..$$

Liu, R-M, Shu '11; see also Tulin & Winslow '11; Cline et al '11

Viable EWB & CPV:

• EDMs are 2-loop

• CPV is flavor non-diag

EDM Probes: EWB Implications

Light staus: LHC consistent & suppress 1-loop EDMs

No CEDM (¹⁹⁹ Hg): EWB-viable but $m_H \rightarrow$ New scalars for EWPT

Kozaczuk, Wainwright, Profumo, RM

Viable EWB & CPV:

• EDMs are 2-loop

• CPV is flavor non-diag

Weak Mixing in the Standard Model

