Neutrinos Experiments at Reactors

Yifang Wang Institute of High Energy Physics June 27, 2013, San Francisco

A Long, Successful History

Direct observation(50's): Reines

Oscillation:

- ⇒ Early searches(70's-90's):
 - ✓ Reines, ILL, Bugey, ... Palo Verde, Chooz
- \Rightarrow Determination of $\theta_{12}(90's-00's)$:
 - ✓ KamLAND
- \Rightarrow Discovery of θ_{13} (00's-10's): :
 - ✓ Daya Bay, Double Chooz, RENO
- Neutrino magnetic moments (90's-00's):
 - → Texono, MUNU
- ♦ Mass hierarchy(10's-20's):
 ⇒ JUNO, RENO-50
- Sterile neutrinos(10's):
 - → Nucifer, Stereo, Solid …

A Long, Successful History

- Direct observation(50's): Reines
- Oscillation:
 - ⇒ Early searches(70's-90's):
 - ✓ Reines, ILL, Bugey, ... Palo Verde, Chooz
 - \Rightarrow Determination of $\theta_{12}(90's-00's)$:
 - ✓ <u>KamLAND</u>
 - \Rightarrow Discovery of θ_{13} (00's-10's): :
 - ✓ Daya Bay, Double Chooz, RENO
- Neutrino magnetic moments (90's-00's):
 - → Texono, MUNU
- Mass hierarchy(10's-20's):
 - ⇒ JUNO, RENO-50
- Sterile neutrinos(10's):
 - ⇒ Nucifer, Stereo, Solid …

Latest KamLAND Results: θ₁₂

Reactors are all off in Japan since Mar. 2011:

A unique opportunity for precise measurement of backgrounds

Data combination	Δm_{21}^2	$\tan^2 \theta_{12}$	$\sin^2 \theta_{13}$
KamLAND	$7.54_{-0.18}^{+0.19}$	$0.481\substack{+0.092\\-0.080}$	$0.010\substack{+0.033\\-0.034}$
KamLAND + solar	$7.53_{-0.18}^{+0.19}$	$0.437\substack{+0.029\\-0.026}$	$0.023\substack{+0.015\\-0.015}$
KamLAND + solar + θ_{13}	$7.53_{-0.18}^{+0.18}$	$0.436\substack{+0.029\\-0.025}$	$0.023\substack{+0.002\\-0.002}$

<u>θ₁₃: Three on-going experiments</u>

Experiment	Power (GW)	Baseline(m) Near/Far	Detector(t) Near/Far	Overburden (MWE)	Designed Sensitivity
	()			Near/Far	(90%CL)
Daya Bay	17.4	470/576/1650	40//40/80	250/265/860	~ 0.008
Double Chooz	8.5	400/1050	8.2/8.2	120/300	~ 0.03
Reno	16.5	409/1444	16/16	120/450	~ 0.02

Daya Bay

Double Chooz

Reno

Detectors

	PMT	Coverage	pe yield	pe yield/Coverage
Daya Bay	192 8''	~6%	163 pe/MeV	1.77
RENO	354 10"	~15%	230 pe/MeV	1
Double Chooz	390 10"	~16%	200 pe/MeV	0.81

6

2013-6-27

Event Signature and Backgrounds

Signature:

$$\bar{v}_e + p \rightarrow e^+ + n$$

- \Rightarrow **Prompt:** e⁺, **1-10 MeV**,
- ▷ Delayed: n, 2.2 MeV@H, 8 MeV @ Gd
- ⇒ Capture time: 28 µs in 0.1% Gd-LS

Backgrounds

⇒ Uncorrelated: random coincidence of

- γγ, γn or nn
- γ from U/Th/K/Rn/Co... in LS, SS, PMT, Rock, ...
- n from α-n, μ-capture, μ-spallation in LS, water & rock

⇒ Correlated:

- ✓ Fast neutrons: n scattering n capture
- « ⁸He/⁹Li: β decay -n capture
- Am-C source: γ rays n capture
- ✓ α-n: ${}^{13}C(\alpha,n){}^{16}O$

Daya Bay: Data taking & analysis status

- A→Two Detector Comparison: Sep. 23, 2011 – Dec. 23, 2011
 NIM A 685 (2012), pp. 78-97
- B→First Oscillation Result: Dec. 24, 2011 – Feb. 17, 2012 Phys. Rev. Lett. 108, 171803 (2012)
- C→Updated analysis:
 Dec. 24, 2011 May 11, 2012
 Chinese Physics C37, 011001 (2013)

Daya Bay: Results(C)

F.P. An et al., Chin. Phys.C 37(2013) 011001

 $\begin{aligned} \mathbf{R} &= 0.944 \ \pm 0.007 \ (\text{stat}) \ \pm 0.003 \ (\text{syst}) \\ \text{Sin}^2 2\theta_{13} &= 0.089 \ \pm 0.010 (\text{stat}) \ \pm 0.005 (\text{syst}) \\ \chi^2/\text{NDF} &= 3.4/4, \ 7.7 \ \sigma \ \text{for non-zero} \ \theta_{13} \end{aligned}$

Sorry, D & E results will be released later

Systematic Errors at Daya Bay: Side-by-Side Comparison

Expected ratio of neutrino events: R(AD1/AD2) = 0.982

- The ratio is not 1 because of target mass, baseline, etc.
- Measured ratio: 0.987 ± 0.004(stat) ± 0.003(syst)

This check will determine finally the systematic error

Data set: Dec 24 to May 11

RENO Status

From Soo-Bong Kim

RENO Results

• First result in April 2, 2012.

 $\sin^2 2\theta_{13} = 0.113 \pm 0.013(stat) \pm 0.019(syst)$

• A new result reported in March, 2013.

Double Chooz: many results

DC θ_{13} Analyses Evolution

From Herve de Kerret

Two independent measurements

Rate+shape analysis→ clear θ_{13} E/L pattern & BG constrains DC-II(Gd): sin²(2 θ_{13})=0.109±0.04 [0.030^{stat}±0.025^{syst}] DC-II(H): sin²(2 θ_{13})=0.097±0.05 [0.034^{stat}±0.034^{syst}]

Well controlled background: Reactor-off

Backgrounds & uncertainties

	Daya Bay		Reno		Double Chooz
	Near	Far	Near	Far	Far
Accidentals (B/S)	1.4%	4.0%	0.56%	0.93%	0.6%
Uncertainty(ΔB/B)	1.0%	1.4%	1.4%	4.4%	0.8%
Fast neutrons(B/S)	0.1%	0.06%	0.64%	1.3%	1.6%
Uncertainty(ΔB/B)	31%	40%	2.6%	6.2%	30%
⁸ He/ ⁹ Li (B/S)	0.4%	0.3%	1.6%	3.6%	2.8%
Uncertainty (ΔB/B)	52%	55%	48%	29%	50%
α -n(B/S)	0.01%	0.05%	-	-	-
Uncertainty(ΔB/B)	50%	50%	-	-	-
Am-C(B/S)	0.03%	0.3%	-	-	-
Uncertainty (ΔB/B)	100%	100%	-	-	-
Total backgrounds(B/S)	1.9%	4.7%	2.8%	5.8%	5.0%
Total Uncertainties $(\Delta(B/S))$	0.2%	0.35%	0.8%	1.1%	1.5%

Efficiencies and Systematics

	Daya Bay		Reno		Double Chooz
	Corr.	Uncorr.	Corr.	Uncorr.	Corr/Uncorr.
Target proton	0.47%	0.03%	0.5%	0.1%	0.3%
Flasher cut	0.01%	0.01%	0.1%	0.01%	-
Delayed energy cut	0.6%	0.12%	0.5%	0.1%	0.7%
Prompt energy cut	0.1%	0.01%	0.1%	0.01%	-
Energy response	-	-	-	-	0.3%
Trigger efficiency					< 0.1%
Multiplicity cut	0.02%	<0.01%	0.06%	0.04%	-
Capture time cut	0.12%	0.01%	0.5%	0.01%	0.5%
Gd capture ratio	0.8%	<0.1%	0.7%	0.1%	0.3%
Spill-in	1.5%	0.02%	1.0%	0.03%	0.3%
livetime	0.002%	<0.01%			-
Muon veto cut	-	-	0.06%	0.04%	-
Total	1.9%	0.2%	1.5%	0.2%	1.0%

Reactor flux estimate

	Daya Bay		Reno		Double Chooz
	Corr.	Uncorr.	Corr.	Uncorr.	Corr./Uncorr.
Thermal power		0.5%		0.5%	0.5%
Fission fraction/Fuel composition		0.6%		0.7%	0.9%
Fission cross section /Bugey 4 measurement			1.9%		1.4%
Reference spectra	3%		0.5%		0.5%
IBD cross section			0.2%		0.2%
Energy per fission	0.2%		0.2%		0.2%
Baseline	0.02%		-		0.2%
Spent fuel		0.3%			
Total	3%	0.8%	2.0%	0.9%	1.8%

Summary of latest results

- **Daya Bay** Gd: $Sin^2 2\theta_{13} = 0.089 \pm 0.010^{stat} \pm 0.005^{syst}$ **Double Chooz** Gd: $Sin^{2}(2\theta_{13}) = 0.109 \pm 0.030^{stat} \pm 0.025^{syst}$ $Sin^{2}(2\theta_{13}) = 0.097 \pm 0.034^{stat} \pm 0.034^{syst}$ ➡ H: **RENO** Gd: $Sin^2 2\theta_{13} = 0.113 \pm 0.013^{stat} \pm 0.019^{syst}$ Can we take their weighted average? Yes, if following issues are properly dealt:
 - → Correlated errors between experiments
 - ⇒ Errors are estimated in a unified way

Future prospects: Daya Bay

- Calibration & maintenance completed last summer.
- Full detector operational since Oct. 2012
- Precision measurements in the next 3-5 years

RENO's Projected Sensitivity of θ_{13}

$$\sin^2 2\theta_{13} = 0.100 \pm 0.010(stat.) \pm 0.015(syst.)$$

Double Chooz

- Near detector in construction till Spring 2014.
- The first result of the full experiment will be available at the end of 2014, towards a final precision of 10%.

From Herve de Kerret

Next Step: Mass Hierarchy

	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan
Status	running	planned	approved	Construction	construction
power/GW	17.4	17.4	17.4	17.4	18.4

The plan: a large LS detector

- LS volume: × 20→ for more mass & statistics
- light(PE) × 5 → for resolution

Physics Reach

Thanks to a large θ_{13}

- Mass hierarchy
- Precision measurement of mixing parameters
- Supernova neutrinos
- Geoneutrinos
- Sterile neutrinos

		Current	Daya Bay II
	Δm_{12}^2	3%	0.6%
	Δm_{23}^2	5%	0.6%
	$\sin^2\theta_{12}$	6%	0.7%
	$\sin^2\theta_{23}$	20%	N/A
201	$\sin^2\theta_{13}$	14% → 4%	~ 15%

For 6 years, mass hierarchy cab be determined at 4σ level, if $\Delta m^2_{\mu\mu}$ can be determined at 1% level

25

Detector size: 20kt Energy resolution: 3%/√E Thermal power: 36 GW

Detector design

- LS detector in the water pool: No Gd-loading
- Estimated signal event rate: 40/day
- Backgrounds:
 - ⇒ Accidentals(~10%), ⁹Li/⁸He(<1%), fast neutros(<1%)</p>
- Several detector options:
 - ⇒ Acrylic ball + unistruct for PMT
 - ⇒ Steel ball + acrylic blocks
 - ⇒ Steel ball + acrylic walls + Balloon
 - ⇒ ..
- Design is underway
- Prototype will be started by the end of year
- Final decision: 2014-2015

Experimental hall

Preliminary study shows that:
 Stability of the hall is not a problem
 Total time needed for the civil construction is 3 years

Proposal for RENO-50

Soo-Bong Kim (KNRC, Seoul National University) "International Workshop on RENO-50, June 13-14, 2013"

Overview of RENO-50

 RENO-50 : An underground detector consisting of 18 kton ultralow-radioactivity liquid scintillator & 15,000 20" PMTs, at 50 km away from the Hanbit(Yonggwang) nuclear power plant

• Goals : - High-precision measurement of θ_{12} and Δm_{21}^2

- Determination of neutrino mass hierarchy
- Study neutrinos from reactors, (the Sun), the Earth, Supernova, and any possible stellar objects

 Budget : \$ 100M for 6 year construction (Civil engineering: \$ 15M, Detector: \$ 85M)

 Schedule : 2013 ~ 2018 : Facility and detector construction 2019 ~ : Operation and experiment

Conceptual Design of RENO-50

Reactor neutrino anomaly

- By a new flux calculation, there may exist a reactor neutrino flux deficit: 0.943 \pm 0.023. A 3 σ effect ?
- Later confirm by other calculations
- Oscillation with sterile neutrinos ?
 - Other experimental "hints": LSND, MiniBooNE, Gallex...
 - Global fit of all "hints": severe tensions
 - Cosmological bounds: not so favored
- New analysis: different opinions

T.A. Mueller et al.,
PRC83:054615,2011
P. Huber et al.,
PRC84:024617,2011.
C. Zhang et al.,
arXiv: 1303.0900

Solution: experiments

- Radioactive sources: CeLAND(¹⁴⁴Ce in KamLAND), SoX(⁵¹Cr in Borexino),...
- Accelerator beams: IsoDAR, Icarus/Nessie, nuSTORM...
- Reactors: Nucifer, Stereo, Solid,...
- New measurements of β-spectrum from U & Pu(Munich)

<u>Summary</u>

- Reactor neutrinos are powerful and well understood
- Recently very successful on $\theta_{12}, \theta_{13}, ...$
- Precision on Sin²2θ₁₃ will be significantly improved in the next few years, up to ~ 4%
- Will play important roles on:
 - → Mass hierarchy
 - Precision measurement of 3/6 mixing parameters up to <
 ~1% level → unitarity test of the mixing matrix
 - ➡ Sterile neutrinos
 - Neutrino properties: magnetic moments, coherent scattering, ...