LONG-BASELINE NEUTRINO MEASUREMENTS

Sam Zeller Fermilab

Lepton/Photon June 27, 2013

- what's new?
- with an emphasis on accelator-based neutrino experiments

🛟 Fermilab

U.S. DEPARTMENT OF

Neutrinos Sources

- 2
 - neutrinos are one of the most abundant particles in the universe and we are fortunate that there are many sources of neutrinos

- span an enormous energy range (MeV to PeV)

- we have gotten a lot of info this way
- we have used many of these sources to make major discoveries

S. Zeller, Lepton/Photon, 06/27/13

⁽Formaggio, Zeller, Rev. Mod. Phys. 84, 3, 2012)

Neutrino Oscillations

• the discovery that ν 's can change from one type to another came from two rather unexpected sources (ultimate long-baseline ν experiments)

• together these determine the survival probability of a given neutrino

Accelerator & Reactor Neutrinos

- while the first indications were observed in astrophysical sources, we have also tested in carefully controlled experiments
 - particle accelerators
 - nuclear reactors
- fixed L, well-known E_v
- have played a crucial role in the confirmation of the neutrino oscillation phenomenon

together, these test our theoretical framework

Accelerator & Reactor Neutrinos

- all three mixing angles have now been measured!
- how does this change things?

 $sin^2 2\theta_{13} = 0.089 \pm 0.010$ (stat) ± 0.005 (sys) An et al., Chin. Phys. C37, 011001 (2013)

Next Challenges

- establishing such a relatively large value of θ_{13} opens up some very exciting possibilities for long-baseline v oscillation experiments ...
 - is our 3ν picture correct or is there more to the story? (NSI, v_{s} , ...)
 - what is the ordering of the v masses? (implications for GUTs, $0v\beta\beta$)
 - is CP violated in the neutrino sector? (violation of a fundamental symmetry, $\delta_{\rm CP}$ unknown)
- new data from ν experiments aim to address these important questions

controlled by θ_{13}

where are we in this experimental quest?

Accelerator Neutrinos

8

• MINOS (U.S.)

- 735 km baseline, on-axis
- 120 GeV protons, FNAL
- 2005 2012 (MINOS+ to follow)

Soudan o Duluth

IA

MO

WI

Fermilab IL

Madison

MN

- T2K (Japan)
 - 295 km baseline, off-axis
 - 30 GeV protons, JPARC
 - 2010 present

• both v_{μ} disappearance & v_{e} appearance

S. Zeller, Lepton/Photon, 06/27/13

ν_{μ} Disappearance

• MINOS - all data sets (accelerator, atmospheric, both v_{μ} and \overline{v}_{μ}) combined for final disappearance measurements

measure of v oscillations over a large range of baselines

ν_{μ} Disappearance

10

• T2K

 observes almost a complete disappearance of muon neutrinos

(expect 205 events in the absence of oscillations, 58 observed)

- really seeing the power of the L/E choice
- unlike quark mixing, we see large effects in neutrinos

ν_{μ} Disappearance

• crucial to improve our knowledge of θ_{23} as it appears with θ_{13} in long-baseline voscillation probabilities (impacts MH, ζP)

- accelerator neutrinos:
 - MINOS most precise Δm^2_{32}
 - * important for reactor θ_{13}
 - **T2K** most precise θ_{23} * is θ_{23} maximal?
- atmospheric neutrinos:
 - Super-K
 - ANTARES
 - IceCube
 - (measured at $\times 10$ higher E_{γ})

Darren Grant's talk

12

7 8 9 10 11 12 13 14 15

- will run in NOvA beam (2 higher beam energy than MINOS)
- look for new physics in previously unexplored regions
- expect ~3,000 events/year

1 2 3 4 5

6

Neutrino Energy (GeV)

0.0

춖

MINOS+

14

S. Zeller, Lepton/Photon, 06/27/13

What Are They Disappearing To?

What Are They Disappearing To?

- want to confirm the hypothesis that $\nu_{\mu} \rightarrow \nu_{\tau}$ is the cause of the disappearance effect seen in atmospheric & accelerator-based ν 's
- need an experiment capable of detecting short-lived τ 's

Long-Baseline $\nu_{\mu} \rightarrow \nu_{\tau}$

- 400 GeV proton from CERN SPS to produce beam above $\nu^{}_{\tau}$ threshold
- \bullet emulsion to detect τ decay

- March 2013: OPERA reported observation of a third ν_{τ} candidate
- strong evidence (3.8 σ) for v_{τ} appearance also observed in the Super-K atmospheric data (Abe et al., PRL 110, 181802 (2013))

What Are They Disappearing To?

• measurements of subdominant $v_{\mu} \rightarrow v_{e}$ are of great importance because they are very sensitive to mass hierarchy and CP violation

ν_e Appearance

19

• MINOS

• T2K

electron neutrino candidate events in both detectors

v_e Appearance

20

• MINOS

(Adamson et al., PRL 110, 171801 (2013))

(Abe et al., arXiv:1304.0841)

Run1+2+3 data (3.010e20 POT)

signal pred.

background pred.

120 140

angle (degrees)

🕂 data

100

Run1+2+3 data

(3.010e20 POT)

600 800 1000 1200 1400

momentum (MeV/c)

signal pred.

background pred.

+ data

• T2K

3.1σ

with

 $\nu_{\mu} \rightarrow \nu_{e}$

excess

consistent

of events

of events

5 4 3

'n

20

200

0

400

40

60

v_e Appearance Allowed Regions

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) \sim & \sin^{2} 2\theta_{13} & \times \sin^{2} \theta_{23} \frac{\sin^{2}[(1-x)\Delta]}{(1-x)^{2}} \\ & -\alpha \sin 2\theta_{13} & \times \sin \delta \sin 2\theta_{12} \sin 2\theta_{23} \sin \Delta \frac{\sin(x\Delta)}{x} \frac{\sin[(1-x)\Delta]}{(1-x)} \\ & +\alpha \sin 2\theta_{13} & \times \cos \delta \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \frac{\sin(x\Delta)}{x} \frac{\sin[(1-x)\Delta]}{(1-x)} \\ & +\alpha^{2} & \times \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(x\Delta)}{x^{2}} \\ & \alpha \equiv \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}} \sim \frac{1}{30} \quad \Delta \equiv \frac{\Delta m_{31}^{2}L}{4E} \quad x \equiv \frac{2\sqrt{2}G_{F}N_{e}E}{\Delta m_{31}^{2}} \end{split}$$

• gives a measure of several very important things:

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) \sim & \sin^{2} 2\theta_{13} & \times \sin^{2} \theta_{23} \frac{\sin^{2}[(1-x)\Delta]}{(1-x)^{2}} \\ & -\alpha \sin 2\theta_{13} & \times \sin \delta \sin 2\theta_{12} \sin 2\theta_{23} \sin \Delta \frac{\sin(x\Delta)}{x} \frac{\sin[(1-x)\Delta]}{(1-x)} \\ & +\alpha \sin 2\theta_{13} & \times \cos \delta \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \frac{\sin(x\Delta)}{x} \frac{\sin[(1-x)\Delta]}{(1-x)} \\ & +\alpha^{2} & \times \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(x\Delta)}{x^{2}} \\ & \alpha \equiv \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}} \sim \frac{1}{30} \quad \Delta \equiv \frac{\Delta m_{31}^{2}L}{4E} \quad x \equiv \frac{2\sqrt{2}G_{F}N_{e}E}{\Delta m_{31}^{2}} \end{split}$$

• gives a measure of several very important things:

- δ_{CP} and <u>CP violation</u> (appears in combination with sin2 θ_{13} , sin2 θ_{12} , sin2 θ_{23})

$P(\nu_{\mu} \rightarrow \nu_{e}) \sim$	$\sin^2 2 heta_{13}$	$ imes \sin^2 heta_{23} rac{\sin^2[(1-x)\Delta]}{(1-x)^2}$
	$-\alpha\sin 2 heta_{13}$	$\times \sin \delta \sin 2\theta_{12} \sin 2\theta_{23} \sin \Delta \frac{\sin(x\Delta)}{x} \frac{\sin[(1-x)\Delta]}{(1-x)}$
	$+\alpha\sin 2 heta_{13}$	$\times \cos \delta \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \frac{\sin(x\Delta)}{x} \frac{\sin[(1-x)\Delta]}{(1-x)}$
	$+\alpha^2$	$\times \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(x\Delta)}{x^2}$
		$\alpha \equiv \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \sim \frac{1}{30} \Delta \equiv \frac{\Delta m_{31}^2 L}{4E} x \equiv \frac{2\sqrt{2}G_F N_e E}{\Delta m_{31}^2}$

- gives a measure of several very important things:
 - δ_{CP} and <u>CP violation</u> (appears in combination with sin2 θ_{13} , sin2 θ_{12} , sin2 θ_{23})
 - neutrino mass hierarchy (through matter effects)

• probability of $v_{\mu} \rightarrow v_{e}$ (and $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$) over long distances:

- gives a measure of several very important things:
 - δ_{CP} and <u>CP violation</u> - δ_{CP} and <u>CP violation</u> (appears in combination with $\sin 2\theta_{13}$, $\sin 2\theta_{12}$, $\sin 2\theta_{23}$) - neutrino <u>mass hierarchy</u> (through matter effects) (entangled)

 - $\underline{\theta}_{23}$ octant (which tells us about the nature of ν_3)

First Attempt at This

26

- using <u>accelerator-based</u> $\nu_{\mu} \rightarrow \nu_{e}$ data which has unique sensitivity to δ_{CP} , mass hierarchy, θ_{23} octant
- combined with $\underline{\text{reactor}}\;\theta_{13}$ results
- shows how this data will be used in the future
 - this is the concept behind
 the future accelerator-based
 long-baseline v program

캮

NOvA

- 2^{nd} generation long-baseline ν oscillation experiment coming online soon
 - will study $\nu_{\mu} \rightarrow \nu_{e}$ add $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ transitions over a distance of 810 km using an off-axis, narrow beam
 - world's most intense accelerator based v beam (700 kW)

NOvA Detectors

- 28
- \bullet as we've seen, the $\nu_{\rm e}$ signals are small so need a massive detector to go along with the intense v source
- 14 kton totally active liquid scintillator calorimeter

"largest plastic structure ever built"

Near Detector

- NOvA near detector cavern completed
- near detector assembly starts this month
- goal: 1/2 of near detector complete by end of year

S. Zeller, Lepton/Photon, 06/27/13

Far Detector

30

- site at Ash River was completed last year
- NOvA is in steady production mode getting this detector built
 - 54% of the blocks have been installed
 - 33% of the detector has been filled
 - 1.4 kton instrumented

(status as of June 24, 2013)

Ready for Neutrino Beam!

31

• 3D image of a cosmic ray in instrumented portion of the NOvA far detector

Ready for Neutrino Beam!

- 32
- 3D image of a cosmic ray in instrumented portion of the NOvA far detector

 also, extracting 1st physics from the Near Detector On Surface (NDOS)

first v
 beam
 expected
 in a few
 weeks!

i.

NOvA v_{μ} Disappearance

- few-% measurements of Δm^2_{32} , $\sin^2 2\theta_{23}$ for v's and \overline{v} 's separately
- is sin²2 θ_{23} maximal? improved precision on θ_{23} is also important for future CP searches

NOvA $\nu_{\rm e}$ Appearance

36

• resolving the neutrino mass hierarchy

 will get the world's best look at this in a hurry

NOvA v_{e} Appearance

37

• resolving the neutrino mass hierarchy

• also, some new ideas for measuring this with atmospheric & reactor v's

NOvA $\nu_{\rm e}$ Appearance

38

• while new data from both NOvA and T2K are highly anticipated, we know it will be difficult discover \swarrow with current generation experiments

What's Next?

39

- T2K
- OPERA
- MINOS+
- NOvA

an example, in the U.S.:

• LBNE

(see also Shiozawa's talk)

S. Zeller, Lepton/Photon, 06/27/13

LBNE

- broad band beam (v, \overline{v})
 - want to measure the spectrum of v's across largest possible dynamic range
 - 700 kW beam initially, 2.3MW capable
- S. Zeller, Lepton/Photon, 06/27/13

- ingredients for success:
- optimized baseline
 - 1300km is ideal for this physics
- Liquid Argon TPC
 - very low bkgs, high ε over broad E_v
 - goal: 34 kton fiducial volume

v_e Appearance Signals in 35 kton

41

- observe spectral distortions (peaks & valleys)
- also looking to see if
 v,v behave differently
 (direct evidence for CP)

S. Zeller, Lepton/Photon, 06/27/13

LBNE Physics Goals

- \bullet precision tests of 3ν mixing
- large underground detectors can also probe physics not accessible in any other way (proton decay, supernova burst V's, atmospheric V's)

Plans for LBNE

- 43
- LBNE has initial approval from the DOE to begin this program
 - initial approval is for a 10kton far detector on the surface but this can be changed before the project baseline is finalized
 - actively seeking foreign partners to expand the scope of this first phase
- many discussions with potential non-U.S. partners
 - in discussions: India, U.K., ICARUS/INFN, Brazil, LAGUNA-LBNO
 - preliminary discussions: CERN, Dubna
 - hoping to initiate discussions with: Japan, China, additional countries in the Americas, Asia, and Europe
- recently, the leadership of LBNE and LAGUNA-LBNO have begun exploring the possibility of a combined collaboration

... very positive developments!

Liquid Argon TPCs

- 44
 - we are also excited about the detector technology
- below is an actual v event from the ArgoNeuT detector (from Fermilab NuMI neutrino exposure in 2009-2010)

• these detectors are a very powerful tool

(mm scale resolution)

MicroBooNE

45

- idea is to start out small to gain some experience
- in the U.S., we are building MicroBooNE now data-taking in 2014

170 ton LAr TPC (size of a school bus)

- also, 35 ton LBNE prototype
- in Europe, ICARUS (600 ton LAr TPC) has been running since 2010
- S. Zeller, Lepton/Photon, 06/27/13

Neutrino Scattering

- this program requires better neutrino cross section measurements
 - large θ_{13} makes $\mathcal{Q}P$ harder (CP asymmetry ~ $1/\sin\theta_{13}$)
 - evidence from a variety of v data that the underlying nuclear physics is far more complex that we thought (ex: MiniBooNE data)
- new data crucial to help sort out these issues

Lalakulich, Gallmeister, Mosel, arXiv:1203.2935

MINERvA

- 47
- MINERvA helping sort out whether the effects seen in lower energy ν experiments are related to the axial form factor or nuclear effects

(Fiorentini et al., arXiv:1305.2243 Fields et al., arXiv:1305.2234)

• MINERvA data on multiple nuclear targets will also be highly valuable

S. Zeller, Lepton/Photon, 06/27/13

Also New This Year

48

 ν_{μ} CC inclusive scattering results from T2K

(much more to come!)

(A. Aguilar-Arevalo et al., arXiv:1301.7067)

 \bullet improved $\sigma_{\!_{\! \nu}}$ measurements are necessary and important

‡

Conclusions

- 49
- data from a variety of v sources have all worked together to construct our current model of neutrino mixing (solar, atmospheric, accelerator, reactor)
- accelerator-based long-baseline neutrino experiments continue to play a very important role ...
 - measurements of v_{μ} disappearance provide the most stringent constraints on atmospheric oscillations; also, $v_{\mu} \rightarrow v_{\tau}$ detection
 - observations of ν_{e} appearance consistent with new reactor results
- next, experiments will exploit non-zero θ_{13} to rigorously test this picture, measure the ν mass hierarchy, and search for CP violation
 - these experiments promise a rich program with the sensitivity to make fundamental discoveries

... this is an exciting time!

Backups

SURF Today

LBNE 10kton

• LBNE10 does much better than full program for existing experiments

Bands: 1s variations of θ_{13} , θ_{23} , Δm_{31}^2 (Fogli et al. arXiv:1205.5254v3)

T2K 750 kW x 5 yr vNOvA 700 kW x (3 yr v + 3 yr
$$\overline{v}$$
)LBNE10 (80 GeV*) 700 kW x (5 yr v + 5 yr \overline{v})* improved over CDR 2012 120 GeV MI proton beam

S. Zeller, Lepton/Photon, 06/27/13

Mass Hierarchy in LBNE

53

 combining information from accelerator and atmospheric neutrinos

(A. Blake, H. Gallagher)

Atmospheric Neutrinos

54

(A. Blake, hep-ex/1208.2899)

• spectacular signature – multiple oscillation dips visible!

Global Program

55

• how well can we measure δ_{CP} ?

