

Beyond the Standard Model Higgs Searches

Mark Owen The University of Manchester On behalf of the ATLAS & CMS Collaborations

Lepton Photon 2013, San Francisco, USA

Outline

Motivation

MANCHESTER

1824

- Neutral Higgs searches
 - Higgs to tau pairs
 - Higgs to b-quark pairs
 - Heavy Higgs to WW
- Charged Higgs searches
 - H^+ to $\tau \nu$
 - H⁺ to cs
- Summary

Will focus on most recent results

Results possible due to fantastic LHC & detector performance

MANCHESTER 1824 Why Beyond the SM Higgs?

- Want to test whether the SM Higgs mechanism is solely responsible for mass generation for all particles.
 - Could have additional Higgs fields & hence additional Higgs bosons.
- Various possibilities exist, e.g.:
 - Additional Higgs doublet realised in SUSY models connection with addressing the Hierachy problem.
 - Additional singlet fields.
- Additional particles may be accessible at the LHC.

MANCHESTER 1824 Two Higgs Doublet Models

• Additional Higgs doublet added to the SM:

$$\langle \Phi_1 \rangle_0 = \left(\frac{0}{v_1/\sqrt{2}}\right), \langle \Phi_2 \rangle_0 = \left(\frac{0}{v_2/\sqrt{2}}\right)$$

• Different doublets can couple to different quarks & leptons:

Type I: Φ_2 couples to all quarks & charged leptons

MSSM is Type II

- Type II: Φ_2 couples to up-type quarks
 - Φ_1 couples to down-type quarks & charged leptons
- 5 Higgs bosons: h, H, A, H[±]
- Important parameters: $\tan \beta = \frac{v_2}{v_1}$ $\sin \alpha$ Rotation angle to diagonalize mass matrix
- BSM Higgs models still very relevant for the observed Higgs boson with m=125 GeV.

Neutral Higgs Searches

MANCHESTER 1824 Neutral Higgs to Tau Pairs

- Type II 2HDM (including MSSM) at high tanβ have increased couplings to b-quarks & tau leptons.
 - Increased cross-section for production of e.g. $A \rightarrow \tau \tau$.

Experimental signature determined by the tau decays:

- Main background from $Z \rightarrow \tau \tau$ decays model using $Z \rightarrow \mu \mu$ from data and replace μ with simulated τ .
- Fit di-tau mass distribution mass reconstruction is improved by using the measured missing transverse energy.

MANCHESTER 1824

CMS, 12 fb⁻¹ 8 TeV, 5 fb⁻¹ 7 TeV

CMS, 12 fb⁻¹ 8 TeV, 5 fb⁻¹ 7 TeV ATLAS, 5 fb⁻¹ 7 TeV

 Stringent limits on MSSM parameter space in a given benchmark model:

CMS, 12 fb⁻¹ 8 TeV, 5 fb⁻¹ 7 TeV ATLAS, 5 fb⁻¹ 7 TeV

 Stringent limits on MSSM parameter space in a given benchmark model:

• Important to provide also the model independent cross section limits to allow translation into other BSM Higgs models.

 Stringent limits on MSSM parameter space in a given benchmark model:

• Important to provide also the model independent cross section limits to allow translation into other BSM Higgs models.

MANCHESTER 1824

CMS, 12 fb⁻¹ 8 TeV, 5 fb⁻¹ 7 TeV

MANCHESTER Neutral Higgs to b Quark Pairs

- Type II 2HDM (including MSSM) at high tanβ have increased couplings to b-quarks & tau leptons.
 - Dominant decay mode Higgs to bb can be accessed via associated production:

- Challenging final state for the trigger at hadron colliders.
- Background dominated by multijet background sources estimated using data-driven techniques.

MANCHESTER 1824 Neutral Higgs to b Quark Pairs

• D0 and CDF analyses both have slight excesses at low mass:

Combined significance of ~2 sigma in D0+CDF combination.

MANCHESTER 1824 Neutral Higgs to b Quark Pairs

 Recent analysis by CMS in the same final state, using multijet and muon + jet triggers.

 No significant excess seen - analysis excludes region of MSSM parameter space consistent with Tevatron excess.

ATLAS, 13 fb⁻¹ 8 TeV

• 2HDM: Assume 125 GeV Higgs is h and search for H \rightarrow WW with 130 < m_H < 300 GeV

- Analysis selections similar to SM h→WW dilepton analysis with two sub-channels: 0-jet events and 2-jet events.
- Neural networks are then used to separate the Higgs signal from the SM diboson, W/Z+jets & top backgrounds.

MANCHESTER

1824

ATLAS, 13 fb⁻¹ 8 TeV

No excess (other than 125 GeV Higgs!) seen in the signal region:

Heavy Higgs to WW Results are presented by scanning the angle $\alpha \& m_{H}$ in Type I 2HDM:

CMS, 19 fb⁻¹ 8 TeV

- Search for heavy Higgs 600 GeV < m_H < 1 TeV, use hadronic decay mode of one W boson to maximise sensitivity.
- Higgs decays to high p_T W bosons identify the hadronic W boson decay in a single large-radius jet, p_T > 200 GeV:

900

950

1000

Search for heavy Higgs using invariant mass of the two reconstructed W bosons:

Limit expressed as ratio to expected SM cross section.

Charged Higgs Searches

Charged Higgs

CMS, 2-5 fb⁻¹ 7 TeV ATLAS, 5 fb⁻¹ 7 TeV

- For $m(H^+) < m(t) m(b)$, the decay $t \rightarrow H^+b$ is allowed.
- Decay $H^+ \rightarrow \tau \nu$ favoured, e.g. in MSSM with large tan β .

- Both experiments select top-like events with tau decays:
 - Use event yields & exploit kinematic properties ATLAS & CMS.
 - Measure ratio (e or $\mu + \tau$) / (e + μ) ATLAS.

MANCHESTER

1824

Charged Higgs

- Decay $H^+ \rightarrow c\bar{s}$ also possible.
- Search for additional peak in dijet mass spectrum in top events.

Summary

- Active search programme underway at LHC for BSM neutral and charged Higgs bosons.
- No evidence of BSM Higgs found.
- Searches are limiting parameter space available for BSM models.
- Full 8 TeV dataset not fully analysed in most channels.
- Many results still to come stay tuned.

Backup

Mark Owen

MANCHESTER 1824 Two Higgs Doublet Models

• Different doublets can couple to different quarks & leptons, avoiding flavour changing neutral currents

Model	u_R^i	d_R^i	e_R^i	
Type I	Φ_2	Φ_2	Φ_2	
Type II	Φ_2	Φ_1	Φ_1 \leftarrow	—— MSSM is Type II
Lepton-specific	Φ_2	Φ_2	Φ_1	
Flipped	Φ_2	Φ_1	Φ_2	

	Type I	Type II	Lepton-specific	Flipped
ξ_h^u	$\cos \alpha / \sin \beta$			
ξ^d_h	$\cos lpha / \sin eta$	$-\sin lpha / \cos eta$	$\cos lpha / \sin eta$	$-\sin lpha / \cos eta$
ξ_h^ℓ	$\cos lpha / \sin eta$	$-\sin lpha / \cos eta$	$-\sin lpha / \cos eta$	$\cos \alpha / \sin \beta$
ξ^u_H	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	$\sin \alpha / \sin \beta$
ξ^d_H	$\sin lpha / \sin eta$	$\cos \alpha / \cos \beta$	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$
ξ_{H}^{ℓ}	$\sin lpha / \sin eta$	$\cos \alpha / \cos \beta$	$\cos \alpha / \cos \beta$	$\sin lpha / \sin eta$
ξ^u_A	\coteta	\coteta	\coteta	\coteta
ξ^d_A	$-\cot eta$	aneta	$-\cot eta$	aneta
ξ^ℓ_A	$-\cot \beta$	$\tan eta$	$\tan eta$	$-\cot eta$

 $\xi_h^{VV} \propto \sin(\beta - \alpha)$ $\xi_H^{VV} \propto \cos(\alpha - \beta)$

Is this still interesting?

 Many interesting studies on extended Higgs sector in view of the discovery @ 125 GeV, example for MSSM:

• BSM Higgs models still very relevant for the observed Higgs boson. Given h is SM-like - 'decoupling' regime is important:

 $m_A, m_H \gg m_h$

• For MSSM - higher order corrections matter.

Is this still interesting?

• MSSM parameter set with H as the boson discovered at LHC:

B physics constraints

• B physics observables provide constraints on 2HDM, e.g.:

Experimental values (HFAG 2012): BR($\bar{B} \rightarrow X_s \gamma$) = (3.43 ± 0.21 ± 0.07) × 10⁻⁴

 Limits depend on other particles in the loop, e.g. in SUSY models.

B physics constraints

• B physics observables provide constraints on 2HDM:

B physics constraints

• BaBar $D \rightarrow \tau \nu$ measurement:

MANCHESTER 1824

$$\mathcal{R}(D) = \frac{\mathcal{B}(\overline{B} \to D\tau^- \overline{\nu}_\tau)}{\mathcal{B}(\overline{B} \to D\ell^- \overline{\nu}_\ell)}, \quad \mathcal{R}(D^*) = \frac{\mathcal{B}(\overline{B} \to D^* \tau^- \overline{\nu}_\tau)}{\mathcal{B}(\overline{B} \to D^* \ell^- \overline{\nu}_\ell)}$$

 $\mathcal{R}(D)_{
m exp} = 0.440 \pm 0.072 \quad \mathcal{R}(D^*)_{
m exp} = 0.332 \pm 0.030, \ \mathcal{R}(D)_{
m SM} = 0.297 \pm 0.017 \quad \mathcal{R}(D^*)_{
m SM} = 0.252 \pm 0.003,$

 3.4σ from SM

SUSY Parameter Scans

• Parameter scans in CMSSM and NUHM1, including constraints from $m_h=125$ GeV Higgs, LHC direct searches, $B_s \rightarrow \mu\mu$, $(g-2)_{\mu}$, $b \rightarrow s\chi$, $B \rightarrow \tau \upsilon$: Buchmueller et al.,

- ATLAS, 5 fb⁻¹ 7 TeV
 ATLAS, 5 fb⁻¹ 7 TeV
 ATLAS, 5 fb⁻¹ 7 TeV
 - Scan over angles between neutrinos & visible tau decay products & weight each mass with PDF from simulation.
 - Resolution of 13-20%.
- CMS mass reconstruction:
 - Maximise likelihood built from measured tau momenta, missing transverse energy, kinematic constraints and expected PDF of tau transverse momentum.
 - Resolution of 15-20%.

MANCHESTER

1824

CMS. 12 fb⁻¹ 8 TeV. 5 fb⁻¹ 7 TeV

MANCHESTER 1824 Neutral Higgs to b Quark Pairs

 Recent analysis by CMS in the same final state, using multijet and muon + jet triggers.

CMS 2011, L = 2.7 fb⁻¹, \sqrt{s} = 7 TeV

All-Hadronic Analysis

Low-Mass Scenario

 $\chi^2/N_{\rm DF} = 121 / 111$

Data

bbX

bbB

(Qb)b

(Cb)b (Bb)b

300 350

BG Uncert.

400 450 500

M₁₂ [GeV]

ATLAS, 13 fb⁻¹ 8 TeV, 5 fb⁻¹ 7 TeV
 Background models are tested in diboson & top control regions:

• Results are presented by scanning the mixing angle α & m_H in <u>Type II</u> 2HDM:

CMS, 19 fb⁻¹ 8 TeV

• Control boosted jet finding with top control region:

$$\tau_{N} = \frac{1}{d_{0}} \sum_{i} p_{T,i} \min\{(\Delta R_{1,i})^{\beta}, (\Delta R_{2,i})^{\beta}, ..., (\Delta R_{N,i})^{\beta}\}$$

$$d_{0} = \sum_{i} p_{T,i} (R_{0})^{\beta}$$

CMS, 19 fb⁻¹ 8 TeV

• Search for heavy Higgs using invariant mass of the two reconstructed W bosons:

CMS, 19 fb⁻¹ 8 TeV

 Interpretation in terms of BSM model with SM Higgs plus an additional EW singlet:

• Search for ZH production, with Higgs decaying to invisible particles:

- Analysis requires two high pT leptons from Z and large missing transverse energy.
- Additional kinematic requirements are applied to select events consistent with Higgs recoiling against Z.
- Background dominated by SM WZ & ZZ production.

Higgs to Invisibles

• No significant discrepancy observed:

MANCHESTER 1824 Higgs to Long Lived Particles

ATLAS, 2 fb⁻¹ 7 TeV

- Possibility for Higgs bosons to decay into heavy, long lived particles in e.g. Hidden Valley models.
- ATLAS search for $h \rightarrow \pi_v \pi_v$; $\pi_v \rightarrow$ fermion pairs.
- Novel trigger using multiple close-by L1 muon signals used.
- Dedicated tracking algorithm in the muon system used to identify vertices outside the calorimeter.

MANCHESTER 1824 Higgs to Long Lived Particles

ATLAS, 2 fb⁻¹ 7 TeV

- Final selection requires two reconstructed vertices ($\Delta R > 2$).
- Backgrounds estimated directly from the data:

$$\begin{split} N_{Fake}(2 \text{ MS vertex}) &= N(MS \text{ vertex}, 1 \text{ trig})^* P_{vertex} \\ &+ N(MS \text{ vertex}, 2 \text{ trig})^* P_{reco} \end{split}$$

• No events observed, with 0.03 expected from background.

Charged Higgs

- SM W decay & tau decay determine the final state:
 - τ + jets: τ \rightarrow hadrons, W boson \rightarrow hadrons.
 - $\mu / e + \tau$: $\tau \rightarrow$ hadrons, W boson \rightarrow lepton & neutrino.
 - $\mu / e + \mu / e$: $\tau \rightarrow$ lepton & neutrino, W boson \rightarrow lepton & neutrino.

 Doubly charged Higgs boson present in models with a scalar triplet, e.g. type II seesaw for neutrino mass generation.

- Striking signature of invariant mass peak in same-sign charge dilepton pairs.
- CMS: Look for three and four lepton events, including possibility of one hadronic tau.
- ATLAS: Look for same-sign dilepton events.

MANCHESTER

1824

CMS, 5 fb⁻¹ 7 TeV

CMS, 5 fb⁻¹ 7 TeV

• CMS selections:

Variable	ее, еµ, µµ	eτ, μτ	ττ
$\sum p_{\mathrm{T}}$	$> 1.1 m_{\Phi} + 60 \text{GeV}$	$> 0.85m_{\Phi} + 125\text{GeV}$	$> m_{\Phi} - 10 \text{GeV}$
			or > 200 GeV
$ m(\ell^+\ell^-)-m_Z $	> 80 GeV	> 80 GeV	> 50 GeV
$E_{\rm T}^{\rm miss}$	none	> 20 GeV	> 40 GeV
$\Delta \varphi$	$< m_{\Phi}/600 \text{GeV} + 1.95$	$< m_{\Phi}/200 \text{GeV} + 1.15$	< 2.1
Mass window	$[0.9m_{\Phi}; 1.1m_{\Phi}]$	$[m_{\Phi}/2; 1.1m_{\Phi}]$	$[m_{\Phi}/2 - 20 \text{GeV}; 1.1 m_{\Phi}]$

Table 3: Selections applied in various four-lepton final states.

Variable	ее, еµ, µµ	eτ, μτ	ττ
$\sum p_{\mathrm{T}}$	$> 0.6m_{\Phi} + 130 \text{GeV}$	$> m_{\Phi} + 100 \text{GeV} \text{ or} > 400 \text{GeV}$	> 120 GeV
$ m(\ell^+\ell^-)-m_{Z^0} $	none	> 10 GeV	> 50 GeV
$\Delta \varphi$	none	none	< 2.5
Mass window	$[0.9m_{\Phi}; 1.1m_{\Phi}]$	$[m_{\Phi}/2; 1.1m_{\Phi}]$	none

CMS, 5 fb⁻¹ 7 TeV

• No excess seen, limits are set:

 $\mathcal{B}(\Phi^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}) = 100\%$ CMS $\sqrt{s} = 7$ TeV, $\int \mathcal{L}dt = 4.9 \text{ fb}^{-1}$

MANCHESTER 1824

Table 6: Summary of the 95% CL exclusion limits.

Benchmark point	Combined 95% CL limit [GeV]	95% CL limit		
_		for pair production only [GeV]		
$\mathcal{B}(\Phi^{++} ightarrow \mathrm{e^+e^+}) = 100\%$	444	382		
$\mathcal{B}(\Phi^{++} ightarrow \mathrm{e}^+ \mu^+) = 100\%$	453	391		
$\mathcal{B}(\Phi^{++} ightarrow \mathrm{e}^+ au^+) = 100\%$	373	293		
$\mathcal{B}(\Phi^{++} \rightarrow \mu^+ \mu^+) = 100\%$	459	395		
$\mathcal{B}(\Phi^{++} ightarrow\mu^+ au^+)=100\%$	375	300		
$\mathcal{B}(\Phi^{++} ightarrow au^+ au^+) = 100\%$	204	169		
BP1	383	333		
BP2	408	359		
BP3	403	355		
BP4	400	353		

Eur. Phys. J. C 72 (2012) 2189

ATLAS, 5 fb⁻¹ 7 TeV

• ATLAS selects inclusive same-sign lepton pairs and looks for peak in invariant mass distributions:

ATLAS, 5 fb⁻¹ 7 TeV

• No excess seen, limits are set:

$BR(H_L^{\pm\pm} \to \ell^{\pm} \ell'^{\pm}) \mid$	95%	95% CL lower limit on $m(H_L^{\pm\pm})$ [GeV]				
	$e^{\pm}e^{\pm}$		$\mid \mu^{\pm}\mu^{\pm} \mid$		$ e^{\pm}\mu^{\pm}$	
	exp.	obs.	exp.	obs.	exp.	obs.
100%	407	409	401	398	392	375
33%	318	317	317	290	279	276
22%	274	258	282	282	250	253
11%	228	212	234	216	206	190

MANCHESTER 1824 SM with Fourth Generation

CMS, 5 fb⁻¹ 7 TeV; 5 fb⁻¹ 8 TeV

 CMS re-interpretation of SM Higgs analyses (except xx) in context of SM with 4th generation of quarks - observed signal at m=125 GeV has too small rate to be compatible with SM4:

• SM4 Higgs excluded for $110 < m_h < 600$ GeV (99% CL).

Fermiophobic Higgs

 CMS analysis of xx channel, targeting VH and VBF production modes in context of Fermiophobic Higgs scenario:

- Excess at m=125 GeV too small for Fermiophobic Higgs.
- Fermiophobic Higgs excluded for 110 < m_h < 147 GeV (95% CL).