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A Grand Success of Electroweak Theory
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Remaining Questions Post-July 4th

= Does the recently observed Higgs boson
unitarize the WW scattering cross-section?

— i.e. It looks like a Higgs boson, but does it do the

job of one? Diboson production

touches on all of

¢ |n analogy with the “imposter Higgs” do we have a ]
these issues.

“goldbricking Higgs”?

This is a long-term

= |s the electroweak force merely the remnant of a process; this talk will
stronger, shorter-ranged force? be a status report.

— Like van der Waals forces in atomic physics?

= Are there any surprises?

Let’s start with the W+photon interaction
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The Semiclassical W

= The interaction between the W and the electromagnetic field can be
completely determined by three numbers:

— The W’s electric charge
e Effect on the E-field goes like 1/r?

— The W’s magnetic dipole moment
e Effect on the H-field goes like 1/r3

— The W’s electric quadrupole moment
e Effect on the E-field goes like 1/r*

=  Measuring the Triple Gauge Couplings (WWY) is equivalent to measuring the
2" and 3" numbers

— Because of the higher powers of 1/r, these effects are largest at small distances
— Small distance = short wavelength = high energy (5)
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Couplings In More Detail

pu v

L= g(\NjVW“AV —WJA,WW)wL (l+AKy)(\N;\NVF”V)+%(WTWuFVp)

W

(with) + three similar terms for the Z

W, =0,W, —o,W, — gW, x W,

¥ nine other terms that do evil things
(violate CP and/or EM gauge invariance)

= The convention for this talk is that every
parameter you'll see (e.g. Ag,%,Ak,, A,) is zero
in the Standard Model.

— Thisis a slight deviation from the literature

= Dimension 4 operators alter Ag,%,Ax, and Ax;:
effects grow as §”

= Dimension 6 operators alter 7‘7 and A, :effects grow
as S.
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W+y Production

The experiments are looking for
events like this:

\ rJ

Which includes triple gauge couplings,

Py
g
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W+y :What The Experiments See ATLAS

Phys. Rev.
D 87,
CMS EWK- 112003
11-009- (2013)
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A sample dominated by real W+y, with the largest background being W+jets, with a jet
misidentified as a photon. This is controlled with template fits, ratio correction and
ABCD two-dimensional sideband subtraction.

These plots show p;(y)=E{(y). Later plots in the talk will show other variables, but all

are measurements of or proxies for the diboson system invariant mass, S.
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W+y :What The Experiments See Il
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The agreement between data (both experiments) and theory is smaller than the range
of variation between theoretical models.

“Exclusive” here means exactly zero jets
(which is why MCFM works better here, as expected)
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Additional Evidence for Wy: the RAZ
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= Thisis the “Radiation Amplitude Zero”, caused by the interference between the
TGC and ISR/FSR amplitudes.

= Note that the dip at n=0 exists for the signal, but not for the background.

=  First seen at the Tevatron
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What Does This Tell Us?

—

A
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LimitS on AK and A; CMS Preliminary, L = 5 fb”
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Beyond Ak and A

= The Ak-A formalism has its problems:
— Changing Ak or A increases the cross-section at high p;. The problem is, it doesn’t stop,
so one needs to put in a form-factor cutoff A to keep things finite.

e This same cutoff is what allows one to mix Dimension 4 and 6 operator coefficients: if p,, = e(2
+Ax, +A,)/2M, and Q = -e(1 + Ak, - A,)/2M?, ,that’s exactly what we are doing.

— Tevatron experiments historically set the cut-off to 2 TeV: beyond their ability to
measure
— Thisis too low for LHC experiments
e Setting A =6 TeV only postpones the inevitable
e Setting A = Infinity solves the postponment problem, but we’re left with an inconsistent model

=  An alternative exists based on Effective Field Theories:

— arXiv 1205.4231 (Degrande, Greiner, Kilian, Mattelaer, Mebane, Stelzer, Willenbrock
and Zhang) casts this in the form of an effective field theory and avoids having to
include a form-factor. Cut-off effects are smaller and less relevant.

=  “Tradition” (i.e. ease of comparison with prior experiments) keeps us from
switching, but it has also led us to a baseline framework that is consistent only in
the SM limit.

— lronically, we can’t directly compare anyway, since different experiments use different
cut-offs.
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Z+y Production

=  Unlike the W-y case, there is no TGC here in the SM (see next slide)

» Thereis still ISR, and FSR for Z = ee and up.
= The BSM couplings probed here are named h, and h,, rather than Ax and A, and

there are two sets of them, correspond%(ng to: v
0.. ..’
0’ Q.
y 0’ ZO Q.
IIIIIIIIII'. and IIIIIIIIII’
“‘ZO “‘ZO
* *
“ ¢‘
* *
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Why No All-Neutral Couplings in the SM? V{ZO

L4
L4

Here’s where thinking about the unbroken 'Y/ZO ’.” 9
SU(2) X U(1) symmetry helps. memmmmmned y/ZO ®
= Trilinear Coupings %

— B-B-B: zero because U(1)’s are Abelian

— B-Bw, The w’s don’t carry hypercharge, and the B doesn’t carry
— B-wz-ws isospin. So the “mixed couplings” are zero
— W3-W3-W;

¢ The Clebsch-Gordon coefficient for (1,0)+(1,0)=(1,0) is zero.
e This is the SU(2) symmetry in action

These are all zero. Any linear

1x1|.5— combination (like the y and Z) of
[ 1]+ 4 zeros is still zero.
+1 0]1/2 1/2] 2 1 0
0+111/2-1/2] O o 0
+1 =1(1/6 1/3 ..
0 0/2/3 @B 2 1 A similar argument holds for the
1 +1 16172 1/3] -1 . .
o1z 2| 2 guartic couplings.
Y, "= (=1)my/ ™ [-1 0n1/2-1/2|-2
| Sl Py
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Number of events / 1 GeV

(Z - ll)+y :What The Experiments See
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=  Same story as before
— Good signal to background (which is dominated by jets
misidentified as photons) E'IASOEQNK'
— In this case the Z+y signal is pure ISR and FSR PAS
— No significant excess ATLAS
e Particularly at large p;(y) — a proxy for § : characteristic of an Ehg;' Rev.
anomalous TGC 112003
(2013)
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e
(Z - vv)+y :What The Experiments See
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No significant excess observed.
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Limits on ht;, h%;, h,, hZ,
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ATLAS and CMS results are consistent with each
other and with the SM.
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P | L T L [ I R
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case.

= Here the LHC does much
better than the Tevatron

— Discussion in 2 slides

= The choice of cutoff is
much more important
here than in the W+y

18




Why Are The CMS/ATLAS Results Different?

Sensitivity to

= Both experiments have comparably sized datasets new physics is

= Both see about what they expect given the SM Binning! driven by the
=  What's different? high mass
events.

It matters how your events are distributed at high mass:

250‘ ‘

Gives a very different limit than:

250 ‘ ’

700+

700+

=  CMS uses a binning from 250-400 and 400-700 GeV
= ATLAS uses a binning from 250-600 GeV

— They set the limit based on the number of events above 100 GeV
= This is probably a good argument to switch to unbinned fits

T. LeCompte (ANL) - LP2013
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Summary for W/Z+y

The Standard Model remains intact

— No evidence of anomalous W/Z+y interactions
— The W’s MDM and EQM are measured to be within about 20% of the SM values

The LHC experiments are more sensitive to Z+y than W+y

— For the h’s, these are the world’s most sensitive; for Ak and A, they are competitive
with the Tevatron (at twice the data) and LEP, LEP remains most sensitive for Axk.

— Operators are of Dimension 6 and 8 rather than 4 and 6, so the extra reach in § pays off

14 TeV running will be even better in this regard (as will 8!)

The cutoff A introduces a complication
— A 2TeV cutoff is no longer enough
— It makes a factor of ~2 difference on the limits on h

— Theoretical alternatives exist Next: multiple

heavy bosons.

T. LeCompte (ANL) - LP2013
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Heavy Diboson Production: WW, WZ and ZZ

q W
= Qualitatively, the same story as W/Z +

gamma
TGC

— Sensitivity to new physics is at short W
distances/high mass scales

— The rate is a mix of TGC processes and q VA
ISR/FSR (in this case, ISR)

— There are no all-neutral couplings

= Rates are much smaller 7
— Handfuls of events, not thousands

= The WW and ZZ channels are a by-product

of the Higgs search

— | will therefore spend more time on WZ 4 > W

T. LeCompte (ANL) - LP2013
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WW & ZZ To Leptons
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ATLAS
Phys. Rev.
D 87,
112001
(2013)
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WW & ZZ Limits
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Putting Meaning to These Limits

For Ak and Ag (Dimension 4 operators)
results are comparable among
experiments

For A (Dimension 6) results are also
comparable
— Note that DO has twice the data; this

shows the interplay between luminosity
and energy.

For the all-neutral couplings (Dimensions
6 and 8) , we are setting limits at the 102
level.

— Energy helps twice: the LHC makes more

ZZ events, and it makes many more at
high m(ZZ) where the sensitivity is.

T. LeCompte (ANL) - LP2013
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the sensitivity improves.

= ATLAS 1fb17TeV results are a bit worse

e than DO’s
Owz .
ST —  Partly because they used 25% of the data DO
WW+jet i d|d
Al [Z+jet 1
Boe : —  However, the ATLAS limits were set based on
1) ATLAS Preliminary the total cross section.

DO used the shape — more information

With the 5 fb! results, datasets are
comparably sized, six p; bins are used, and

=  Recurring theme: it’s what’s going on at the
high end that drives the sensitivity.
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A Different Handle on WW/WZ Production
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Quartic Gauge Couplings

W+'.,“"~ » W+
= This is a high priority — we need to understand .
QGCs to tell if the Higgs unitarizes the process WW
9 WW W- . ’,"‘ ".,"’. W_

= The highest rate process (and thus the first we are
likely to see) is Wyy

— Both the signal and the irreducible background are
down relative to Wy by a factor of ~a W
4

— This happens because of the SU(2) part of the v
photon, not the U(1): an electroweak correction to
electromagnetism
= |flsetthe TGCs to zero, the cross-section blows up Wf‘ Y

— In some sense, makes them easy to see
= The same thing does not happen with QGCs

— Unlike TGCs, | can write down a completely
consistent theory without QGCs

T. LeCompte (ANL) - LP2013

27



A Very Clever Idea From CMS

Look at the mirror image:
— Semi-exclusive production:
e (Mostly) empty events
— Photon VBF to produce WW pairs
- pp =2 pWW-p ()

CMS,{s=7TeV,L=505f"
T T T T T

> 8:| T 1T | L | TT | TT I T 1T |
8 7 - * Data B oretvan o E
o c E= Inclusive w'w [ Diffractive WW ]
o r ) ]
% 6k | | — 3
T C —Elasticyy —» v B Inelastic yy — vt ]
g 5 —y s WOW (SM) .
LL £
4 B
of ey events 1
£ E
£ | Y ]
0 50 100 150 200 250 300
E; [GeV]

Background is 0.84 + 0.15 events, with
comparable contributions from inclusive WW and
vy = 1T. Expected signal is 2.2 + 0.2 events. 2
events are observed.

T. LeCompte (ANL) - LP2013

CMS arXiv:
1305.5596
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In VBF processes, one needs to
infer or calculate the initial state.
In this case, yy dominates.
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CP Violation

With the particle content of the SM, there are three sources of CP violation
— The CKM matrix of the quark sector
— The PMNS matrix of the neutrino sector

— A electric dipole moment or magnetic quadrupole moment of the W
e A consequence of CP-violating triple gauge couplings ¥ and x.

If the W had an EDM, it would induce a neutron EDM as well
— c.f. Marciano and Queijeiro Phys.Rev. D33 (1986) 3449
— Neutron EDM limits are so strict, we would need a trillion W’s to be competitive

The neutron, being spin-%, cannot support a quadrupole moment

—  So while we know that %+ must be small, that argument doesn’t hold for %X

A CP-violating observable needs to be constructed from at least three vectors
— The momenta of the W and y provide only two

T. LeCompte (ANL) - LP2013
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polarization

. ATLAS EPJ C72 (2012) 2001
The Third Vector
‘_. 300?[ T T T T T T T T | ] T T T T | T .I l. [j
S L eomagrrey T Lo
s 250 . -
T - Ldt=31pb’ Wopuv -
= The W decay “remembers” the W 200  ATLAS pY>50GeV

— The three vectors are then p(W), p(y) and J(W) 150'_ if .
100~ " Tt ]
= We can now construct CP-sensitive sof .t s
observables and constrain ®-A 05‘"“,"“‘f \\\\\\ e
-1 -0.5 0 0.5 1
cos(6,p)
= Aside: the W magnetic quadrupole moment CMS, \Js=7TeV, L _ =36 pb"
cannot be too big, or we would see it in the *-:%
W+y rate. N,
—  We wouldn’t know that it is CP-violating 07-
without a measurement like this however. 08

= Afew 100 fb! 14 TeV sample is where this
becomes interesting: a few thousand W+y 0.2
events at high p;

[=]
[ ]
TR IR T

T. LeCompte (ANL) - LP2013

CMS PRL 107 (2011) 021802
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Conclusions

The SM stubbornly refuses to make a prediction falsified by experiment
— Dibosons are no exception

— These are TeV-scale limits: unlike for the muon, our understanding of “g-2” for the W
is at the 0.1 level

New ideas are starting to realize their potential
— Z-2>vvdecaysinZ+y
— VBF production to constrain QGC
— Self-analyzing nature of the W polarization

The higher the dimension operator being probed, the better the LHC does, both in
absolute terms and relative to its peers

— Limits on h, (D8) are better than h; and A (D6) which in turn are better than k (D4)
— Expected because of different powers of s.

Which is why 14 TeV running is so important to the program

T. LeCompte (ANL) - LP2013 v



