BSM Theory in Broadbrush

Mihoko Nojiri KEK & IPMU

Photo from http://www.torange.biz

Contents

- Higgs and SUSY search; What is Natural SUSY?
- "Composite way" ; Composite Higgs, top partner
- "QCD wins"; Why LHC was successful
- Model independent Model; "Simplified" & "effective"
- Leptons and Photons in future

Classic Solution:Supersymmetry

• symmetry to exchange boson and fermion.

new particle predictions sfermions(0), gaugino(1/2), higgsinos(1/2)
 Higgs vs SUSY

• No new dimensionless coupling and no quadratic divergence

- Higgs 4 point coupling ~gauge coupling. (no negative 4 point coupling)+ radiative correction b
 Answering big question
 - gauge coupling unification
 - R parity in MSSM . New stable particle → DM candidate.

but flavor and CP problem -> SUSY breaking models

gauge coupling/soft parameter unification mass spectrum (mSUGRA/CMSSM) and little something

strongly interacting

mass

EW interacting

scalar mass unification important for FCNC

unification

scale

Higgs mass wo higgsino mass YUKAWA correction

Reduction due to stop and higgs mass in RGE

What is natural, anyway?

$$\frac{m_Z^2}{2} = \frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2$$

only wave function renormalization relatively stable prediction

fine tuning is the **response of Z mass** to the **fundamental parameters "a"**

 $\left|\frac{a_i}{M_Z^2}\frac{\partial M_Z^2(a_i; y_t)}{\partial a_i}\right| < \Delta$

Now what is the "a" ? This idea has been criticized since it was proposed in '88

```
GUT scale based (Barbieri et al -> )
```

use GUT scale parameters: m, $M_{1/2}$, Δ is order of 1000 The level of tuning also changes #parameters at GUT scale Weak scale based (Baer et al)

> use parameter at weak scale: typically 1/10 less fine tuned compared with GUT based analysis

> > Why should we mind?

Mind of SUSY theorists

Composite ways

- Technicolor model... Scale up of chiral symmetry breaking in QCD. Higgs as pion (bound state of some strong interaction) conflicts with EW precision data
- The Little Higgs model→Composite Higgs model
 - Higgs as the pNGB of some global symmetry breaking. Typically SO(5)/SO(4), either elementary or composite
 - The theory still needs "top partners", because top must be in a representation of the global symmetry
 - UV completion \rightleftharpoons RS model Holography

five dimensional Yukawa

• Randall Sundrum model \rightleftharpoons Composit $Y_{4D} = \frac{ve^{kr_c\pi}}{\sqrt{2}}Y_{5D}\hat{f}_L^{(n)}(\pi,c_L)$

Physics

- Top partners from $SU(2)_L x SU(2)_R$ symmetry
 - T_L T_R mixed with t_L t_R in standard model sector then decay into bW, tZ, tH.
 Agashe, Contino Pomarol

• q(Q=5/3), q(2/3), q(-1/3)

- RS model --gluon KK (production: coupling to the 1st generation quark, dominantly decays into ttbar)
- Radiative correction to Higgs decay
- Being now constrained by LHC

Collider searches "QCD wins"

dark matter and collider signature

LSP, LKK, LOT

• "SUSY signature"

- "Models with new colored particles decaying into a stable neutral particle--LSP"
- Some of "New physics" are migrated into SUSY category.
- Signal: High P_T jets hiph P_T leptons and E_{Tmiss}

assume mass difference is large

if there are R parity violation, we have additional jets and leptons instead of E_{Tmiss}

Production of W, Z, and top with additional jets would be significant background

background estimation powered by "Matching"

reproducing multijet distribution

good background prediction = exclusion up to kinematical limit

For heavier particle search we expect high P_T top, W, Z

The boosted t, W, Z L identified as a single J but there are structures insid =mass drop

Techng

O(10)GeV

13年6月25日火曜日

170Ge

O(10)GeV

• Mass Drop(identify hard object) • Cucture - Cuctore - C

→Trimming(ignore soft activities)

150GeV

120/GeV

$$\frac{\min[(p_T^{j_1})^2, (p_T^{j_2})^2]}{(M^{\text{jet}})^2} \times \Delta R_{j_1, j_2}^2 > y_{\text{cut}}$$

Degenerate SUSY in Simplified model

• Simplified model: Specify mass and decay pattern instead using full model prediction

- Production cross section → mostly QCD
- Pick up representative decay patterns and mass difference
- Important especially when theorists (roughly) interpret LHC result to their own context.

How light the SUSY particle could be

Effective dark matter interactions

- For the dark matter, we may also consider a model independent approach--namely, the coupling between dark matter and matter is expressed by effective coupling χΓχ qΓq
- Especially for spin dependent interaction LHC give very strong limit, especially for light DM(m_x < 10GeV)

spin independent interactions

spin dependent

Leptons and photons in Future

13年6月25日火曜日

HL-LHC and Higgs Boson

conclusion

- Existing BSM starts being constrained. Extended models are not so simple-- if they are correct answer, why?
- The success of LHC is based on QCD/MC technology
- after 13TeV run, there will be HL-LHC run. Low threshold allows us to study EW sector of new physics strongly.
- ILC, if can be build will allow us to study it further.