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•Neutrinos are produced in 
collisions of cosmic ray 
protons and other nuclei 
with atmospheric nuclei

•pions, kaons→ν’s

•4π

•Neutrino energies extend 
up to ~100 TeV

•Higher energy contribution 
from “prompt” ν’s from 
charm decays not yet 
observed

•(D0,D±,Ds±,Λc±)→ν’s

IceCube
ν-induced
cascades

Neutrinos from the sky: known sources
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Figure 5: The combined energy spectrum is fitted with two functions (see text) and compared to data from the HiRes instrument [43]. The
systematic uncertainty of the flux scaled by E3 due to the uncertainty of the energy scale of 22% is indicated by arrows. A table with the Auger
flux values can be found at [44].
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Neutrinos from the sky: potential astrophysical sources
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•Water Cherenkov
•ν-induced charged particles emit a detectable pattern 

of Cherenkov radiation
• backgrounds from cosmic ray µ and atmospheric ν 

reduced via event timing, direction, energy and vetoing 
techniques

•Radio Askaryan
• radio λ’s are comparable to size of ν-induced shower of 

charged particles; resulting coherent radiation can be 
very powerful

• demonstrated at SLAC with 28 GeV shower × 109 
particles/shower directed into a block of ice

•Penetrating or upward-going air shower
• air Cherenkov (Auger)

•Acoustic
• localized ν-induced heating: sharp sonic pulse
• tests in polar icecap yielded too small λatt  

• water could be better, but need water without noisy 
sea creatures & boats (the Dead Sea?)

Askaryan Effect Observed at SLAC

Simulated
downward-
going
cosmic-ray
muon in 
IceCube

Principles of high energy ν detection

ANITA Coll. PRL (2007)
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Detector regimes: optical vs. radio
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Lake Baikal

IceCube & DeepCore

ANTARES
Super-Kamiokande

Operating large optical water Cherenkov detectors
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Some results from the known (atm.) ν source (water Ch. dets.)
• Following in the footsteps of 

SuperK, high energy neutrino 
telescopes have made their 
first atmospheric neutrino 
oscillation measurement near 
25 GeV 

• no oscillation hypothesis 
rejected at 5.6σ

IceCube (accepted PRL)

IceCube (accepted PRL)
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Some results from the known (atm.) ν source (water Ch. dets.)

IceCube (accepted PRL)

• Following in the footsteps of 
SuperK, high energy neutrino 
telescopes have made their 
first atmospheric neutrino 
oscillation measurement near 
25 GeV 

• no oscillation hypothesis 
rejected at 5.6σ

• oscillation parameters have 
been extracted; in good 
agreement with the global 
best fits

• high statistics analyses are 
now being refined on 2.5 
years of DeepCore (IceCube 
low-energy extension) data
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Some results from the proposed (atm.) ν sources (water Ch. dets.)
• Search for ν’s from:

with other experimental limits [28–37]. We assume a stan-
dard DM halo with a local density of 0:3 GeV=cm3 [25]
and a Maxwellian WIMP velocity distribution with an
rms velocity of 270 km=s. We do not include the detailed
effects of diffusion and planets upon the capture rate, as the
simple free-space approximation [2] included inDarkSUSY
is found to be accurate [38]. Limits on the WIMP-nucleon
scattering cross section can also be deduced from limits
on monojet and monophoton signals at hadron colliders,
but these depend strongly on the choice of the underlying
effective theory and mediator masses [39–41] and are
consequently not included in Fig. 2.

In conclusion, we have presented the most stringent
limits to date on the spin-dependent WIMP-proton cross

section for WIMPs annihilating intoWþW" or !þ!" with
masses above 35 GeV=c2. With this data set, we have
demonstrated for the first time the ability of IceCube to
probe WIMP masses below 50 GeV=c2. This has been
accomplished through effective use of the DeepCore sub-
array. Furthermore, we have accessed the southern sky for
the first time by incorporating strong vetoes against the
large atmospheric muon backgrounds. The added live time
has been shown to improve the presented limits. IceCube
has now achieved limits that strongly constrain dark matter
models and that will impact global fits of the allowed dark
matter parameter space. This impact will only increase in
the future, as analysis techniques improve and detector live
time increases.
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FIG. 2 (color online). 90% C.L. upper limits on "SI;p (top
figure) and "SD;p (bottom figure) for hard and soft annihilation
channels over a range of WIMP masses. Systematic uncertainties
are included. The shaded region represents an allowed minimal
supersymmetric standard model parameter space (MSSM-25
[42]) taking into account recent accelerator [43], cosmological,
and direct DM search constraints. The results from Super-K [28],
COUPP (exponential model) [29], PICASSO [30], CDMS
[31,32], XENON100 (limits above 1 TeV=c2 from the
XENON100 Collaboration) [36], CoGeNT [35], Simple [37],
and DAMA [33,34] are shown for comparison.
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• Nothing was found

PRL 110, 131302 (2013)

producing neutrinos at proton–photon (p–c) interactions in internal
shocks. The remaining parameter spaces available to each model
therefore have similar characteristics: either a low density of high-
energy protons, below that required to explain the cosmic rays, or a
low efficiency of neutrino production.

In the GRB fireball, protons are believed to be accelerated
stochastically in collisions of internal shocks in the expanding GRB.
The neutrino flux is proportional to the rate of p–c interactions, and so
to the proton content of the burst by a model-dependent factor.
Assuming a model-dependent proton ejection efficiency, the proton
content can in turn be related to the measured flux of high-energy
cosmic rays if GRBs are the cosmic-ray sources. Limits on the neutrino
flux for cosmic-ray-normalized models are shown in Fig. 3; each model
prediction has been normalized to a value consistent with the observed
ultra-high-energy cosmic-ray flux. The proton density can also be
expressed as a fraction of the observed burst energy, directly limiting
the average proton content of the bursts in our catalogue (Fig. 4).

An alternative is to reduce the neutrino production efficiency, for
example by modifying the physics included in the predictions16,17 or by
increasing the bulk Lorentz boost factor, C. Increasing C increases the
proton energy threshold for pion production in the observer frame,
thereby reducing the neutrino flux owing to the lower proton density at
higher energies. Astrophysical lower limits on C are established by pair
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Figure 2 | Upper limits on E22 power-law muon neutrino fluxes. Limits
were calculated using the Feldman-Cousins method21 from the results of the
model-independent analysis. The left-hand y-axis shows the total number of
expected nm events, while the right-hand y-axis (Fn) is the same as in Fig. 1. A
time window ofDt implies observed events arriving between t seconds before the
burst and t afterward. The variation of the upper limit (solid line labelled ‘90%
Upper limit’) withDt reflects statistical fluctuations in the observed background
rate, as well as the presence of individual events of varying quality. The dashed
line labelled ‘90% Sensitivity’ shows the upper limit that would have been
obtained with exactly the mean expected background. The event at 30 s (event 1)
is consistent with background and believed to be a cosmic-ray air shower.
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Figure 1 | Comparison of results to predictions based on observed c-ray
spectra. The summed flux predictions normalized to c-ray spectra6,9,19 are
shown as a function of neutrino energy (E) in dashed lines, with the dark grey
dashed line labelled ‘IC40 Guetta et al.’ showing the flux prediction for the 40-
string portion of the analysis, and the black dashed line labelled ‘IC40159
Guetta et al.’ showing the prediction for the full two-year dataset. The cosmic
ray normalized Waxman-Bahcall flux4,20 is also shown for reference as the pale
grey dashed line. 90% confidence upper limits on these spectra are shown as
solid lines, with the grey line labelled ‘IC40 limit’ showing the previous IceCube
result6 and the black ‘IC401IC59 Combined’ line showing the result from the
full dataset (this work). The predicted neutrino flux, when normalized to the
c-rays6,9, is proportional to the ratio of energy in protons to that in electrons,
which are presumed responsible for the c-ray emission (ep/ee, here the standard
10). The flux shown is slightly modified6 from the original calculation9. Wn (left
vertical axis) is the average neutrino flux at Earth, obtained by scaling the
summed predictions from the bursts in our sample (Fn, right vertical axis) by
the global GRB rate (here 667 bursts yr21; ref. 7). The first break in the neutrino
spectrum is related to the break in the photon spectrum measured by the
satellites, and the threshold for photo-pion production, whereas the second
break corresponds to the onset of synchrotron losses of muons and pions. Not
all of the parameters used in the neutrino spectrum calculation are measurable
from every burst. In such cases, benchmark values7 were used for the
unmeasured parameters. Data shown here were taken from the result of the
model-dependent analysis.
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Figure 3 | Compatibility of some neutrino flux predictions based on cosmic
ray production in GRBs with observations. The cross-hatched area
(‘IC40159 Allowed 90% CL’) shows the 90% confidence allowed values of the
neutrino flux (vertical axes, as in Fig. 1) versus the neutrino break energy (eb) in
comparison to model predictions with estimated uncertainties (points); the
solid line labelled ‘IC50159 Allowed 95% CL’ shows the upper bound of the
95% confidence allowed region. Data were taken from the model-independent
analysis from the time window corresponding to the median duration of the
GRBs in our catalogue ( |Dt | 5 28 s). Spectra are represented here as broken
power laws (Wn?{E

21/eb, E , eb; E22, E . eb}) with a break energy eb

corresponding to the D resonance for p–c interactions in the frame of the shock.
The muon flux in IceCube is dominated by neutrinos with energies around the
first break (eb). As such, the upper break, due to synchrotron losses of p1, has
been neglected here, as its presence or absence does not contribute significantly
to the muon flux and thus does not have a significant effect on the presented
limits. eb is related to the bulk Lorentz factor C (eb / C2); all of the models
shown assume C < 300. The value of C corresponding to 107 GeV is .1,000 for
all models. Vertical axes are related to the accelerated proton flux by the model-
dependent constant of proportionality fp. For models assuming a neutron-
decay origin of cosmic rays (ref. 8 and ref. 10) fp is independent of C; for others
(ref. 4) fp / C24. Error bars on model predictions are approximate and were
taken either from the original papers, where included10, or from the best-
available source in the literature15 otherwise. The errors are due to uncertainties
in fp and in fits to the cosmic-ray spectrum. Waxman-Bahcall4 (circle)
and Rachen8 (box) fluxes were calculated using a cosmic-ray density of
(1.5–3) 3 1044 erg Mpc23 yr21, with 3 3 1044 the central value20. The Ahlers10

model is shown with a cross. CL, confidence level.
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• point sources:

• WIMP annihilations:
• diffuse sources:
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• ANITA, RICE, Auger 
ANITA-I ANITA-II

Isolated Vertically 
Polarized Events

1 1

Expected 
Background

1.1 0.97 +/- 0.42

Search for GZK ultra-high energy neutrinos and radio pulse detectors
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Status high energy neutrino searches (circa 2011)
With continuing occurrence of null results the community had started to 
become quite good a placing stringent limits on leading theories...
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Status high energy neutrino searches (circa 2011)
With continuing occurrence of null results the community had started to 
become quite good a placing stringent limits on leading theories...

...and then the ultra-high energy analysis from the first cubic-km datasets 
occurred (IceCube 79 and 86 strings; 615.9 days)

new strings
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The IceCube ultra high energy neutrino search

*Yoshida and Teshima, Prog. 
Theor. Phys. 89, 833 (1993)http://arxiv.org/abs/1304.5356 (accepted PRL)

• An analysis tuned to independently sample muon 
and cascade events up to 109 GeV.

• Designed to remove backgrounds: 

• atmospheric neutrinos below 500 TeV with a cut 
on number photoelectrons (NPE)

• atmospheric muons with an entering track 
hypothesis from the reconstruction and a 
directionally dependent NPE cut

http://arxiv.org/abs/1304.5356
http://arxiv.org/abs/1304.5356
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• Fortunately, there is sometimes a bit of the unexpected in an analysis 

• Fitting tracks to spherical “cascade” events yields unpredictable results

• Two down-going cascades reconstructed as upward tracks, sneaking 
into final muon sample 

The IceCube ultra high energy neutrino search

January 3 2012
NPE 9.628e4
312 optical modules

August 9 2011
NPE 6.993e4

354 optical modules
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A PeV Neutrino near the Golden Gate Bridge
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A PeV Neutrino near the Golden Gate Bridge
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1.04±0.16 PeV1.14±0.17 PeV

The IceCube ultra high energy neutrino search
• Fortunately, there is sometimes a bit of the unexpected in an analysis 

• Fitting tracks to spherical “cascade” events yields unpredictable results

• Two down-going cascades reconstructed as upward tracks, sneaking 
into final sample 

These 2 events were at the lower end of the energy sensitivity for the analysis.  
They were given names fitting for such giant high energy neutrinos...
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1.04±0.16 PeV1.14±0.17 PeV

The IceCube ultra high energy neutrino search

©2013 Sesame Workshop

• Fortunately, there is sometimes a bit of the unexpected in an analysis 

• Fitting tracks to spherical “cascade” events yields unpredictable results

• Two down-going cascades reconstructed as upward tracks, sneaking 
into final sample 

These 2 events were at the lower end of the energy sensitivity for the analysis.  
They were given names fitting for such giant high energy neutrinos...
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arXiv:1304.5356 (accepted PRL)

The IceCube ultra high energy neutrino search
• The energy for the Bert and 

Ernie are too low to be 
GZK and too high to be 
atmospheric

• The spectrum may be 
broken; the flux for an E-2 
spectrum should have 
produced 8-9 more events 
with energy greater than 1 
PeV

• The p-value for the 
background only 
hypothesis is 2.9e-3 (2.8σ)



Darren R. Grant - University of AlbertaJune 27, 2013

The IceCube ultra high energy neutrino search
• The energy for the Bert and 

Ernie are too low to be 
GZK and too high to be 
atmospheric

• The spectrum may be 
broken; the flux for an E-2 
spectrum should have 
produced 8-9 more events 
with energy greater than 1 
PeV

• The p-value for the 
background only 
hypothesis is 2.9e-3 (2.8σ)

• stringent limits placed for 
the highest energies given 
lack of events

arXiv:1304.5356 (accepted PRL)
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The next logical step...
• Extend the search to lower energies for the same 2 year dataset

• the two observed were at the search lower acceptance window, and higher 
energies showed no events 

• previous IceCube analyses had hints for astrophysical neutrino events 
above 100 TeV at approximately 2σ

• Challenges with this approach:

• at lower energies one is more susceptible to backgrounds; atmospheric 
neutrinos will be an irreducible source in the absence of a clear point source 
since they will not be fully absorbed (λabs.~dEarth at Eν~100 TeV) 

• these first 2 events were downward-going; if the source is above the 
horizon there is a background of 1e11 atmospheric muons per year 
potentially masking the signal 
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Following IceCube 
preliminary figures from the 
IPA 2013 Conference talks 
of C. Kopper, N. Nielsen, N. 
Whitehorn

• The solution is to identify starting 
events in the detector by applying an 
active veto to remove the down-going 
backgrounds:

• atmospheric muons identified by using 
part of the detector in anti-
coincidence; can estimate potential 
contamination by using subsequent 
detector regions to measure number 
of muons that evade the other veto 
layer (expect 6 ± 3.4 energetic muons 
in 2 years)

• atmospheric neutrinos: starting 
outside the detector see above; 
starting inside the detector tag with a 
parent atmospheric muon (expect 4.6 
+2.9/-1.9 events in 2 years)

The IceCube high energy starting events analysis
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The IceCube high energy starting events analysis
The result of the search...
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The result of the search... 28 events! (each named after a Muppet; shown in order of appearance)

The IceCube high energy starting events analysis

Images
©2013 Sesame Workshop
©The Walt Disney Company
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The IceCube high energy starting events analysis
• Details of the 28 events:

• energies range from 30 TeV and 1.1 PeV

• 24 were downward; 4 upward

• 7 have a visible muon in the event; 4 are consistent with down-
going muons including 1 with hits in the IceTop surface array

• Expected background, including prompt charm production, is 12.1 
± 3.4 events.  Signal is inconsistent with this background at 4.3σ 
(2.8σ sigma Bert and Ernie alone; 3.6σ the other 26 Muppets 
alone)

• For an all-flavor flux: 
• E2Φ(E) = (3.6±1.2)×10-8 GeV/(cm2 s sr)
• Ecutoff = 1.6(+1.5, -0.4) PeV
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The IceCube high energy starting events analysis

Note: 
a) “EM-equivalent energy” underestimates 
the E of νx NC and ντ CC interactions
b) Energy gap is not statistically significant
c) For showers σ(E)~10% & σ(φ)~10o-15o 
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The IceCube high energy starting events analysis
• Angular reconstruction of the events:

• muons are fairly straightforward (energetic events 
provide long tracks with a large lever arm)

• cascades can be more challenging since their 
light distribution appears spherical (arrival time of 
the photoelectrons in the PMT waveform can be 
used to obtain direction)
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IceCube Preliminary
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At these energies 
events here are 
absorbed

consistent with an 
isotropic flux

The IceCube high energy starting events analysis
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The IceCube high energy starting events analysis
Skymap: No Significant Clustering

See: talk by Naoko Kurahashi Neilson
N. Whitehorn, UW Madison IPA 2013 - 34

N.B.: Chance of background 
clustering at G.C. < 5.4%; at 
exact spot 0.2%

Galactic long. = 12o

Galactic lat. = -9o

• Skymap:  no significant clustering of events in space (or time); GRB 
coincidence search underway and another year of full detector data under 
analysis



Darren R. Grant - University of AlbertaJune 27, 2013

• ANITA III  
(flight 2013/14)

• ARIANNA, ARA (prototype phase)

arXiv:1207.3846

ARIANNA (Ross Ice Shelf, Antarctica) - 
4 stations in operation, 3 additional in 
preparation

Astropart. Phys. (2011)

ARA (South Pole) - 3 stations operating; 4 additional 
planned in 2013/14

Future neutrino detectors: Askaryan radio pulses
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Note: ANITA-III (2013/14) 
expected 5x better than 
ANITA-II

arXiv:1105.2854ARA-37 Projected Sensitivity

Goal is to reach 
the “guaranteed” 
neutrino signal 
from the GZK 
effect 

Future neutrino detectors: Askaryan radio pulses
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increase in threshold not important 
 (in the region where atmospheric background dominates) Future neutrino detectors: optical water Cherenkov

DecaCube (South Pole)
KM3NeT (Mediterranean) - funded and starting construction; 

excellent sensitivity to Galactic Centre and the “Fermi bubbles”

Larger (multi cubic-km scale) detectors for energies above 100 TeV

Smaller (sub-)detectors for energies below 15 GeV

image from P. Coyle
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Future neutrino detectors: optical water Cherenkov
KM3NeT (Mediterranean) and sensitivity to the “Fermi bubbles”

PINGU sensitivity to the neutrino mass hierarchy (using atmospheric neutrinos)

arxiv.org:1306.5846

image from P. Coyle

http://arxiv.org/abs/1306.5846
http://arxiv.org/abs/1306.5846


Darren R. Grant - University of AlbertaJune 27, 2013

• Neutrino astrophysics:

• IceCube has observed a strong excess of neutrino-like events (4.3σ compared to the 
background expectation)

• exhibit a hard energy spectrum (with possible cut off; time will tell)

• are consistent with a flavour ratio of 1:1:1 (mixing and 1:2:0 from pion decay at the 
production site(s) )

• show no evidence (yet) for spatial or temporal clustering

• More data in hand; more events are arriving monthly (the dawn of neutrino astronomy?!)

• very exciting time for the field; existing and planned detectors will add significant sensitivity 

• Neutrino particle physics:  

• the same neutrino telescope techniques have now been demonstrated to work at lower 
energies and measurement of fundamental neutrino properties are feasible (ideal for 
enormous detector volumes at lower costs)

Summary



Conclusions
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Thanks to the organizers! image  
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