SYNERGY OF THE CMB WITH OTHER COSMOLOGICAL PROBES

Science with CMB Lensing

Sudeep Das

ARGONNE NATIONAL LABORATORY

CMB PHOTONS PROPAGATE THROUGH EVOLVING LARGE SCALE STRUCTURE

Sudeep Das, Argonne

26th International Symposium on LEPTON PHOTON INTERACTIONS at HIGH ENERGIES

INTERVENING LARGE-SCALE STRUCTURE POTENTIALS DEFLECT CMB PHOTONS

This is CMB Lensing!

DEFLECTION FIELD IS THE KEY QUANTITY

CMB lensing is essentially a remapping of the CMB fields by the deflection field.

$$\tilde{T}(\hat{n}) = T(\hat{n} + \vec{d})$$

CMB lensing can be discussed completely in terms of the deflection field (no shear/convergence necessary).

Sudeep Das, Argonne

USING CMB POLARIZATION IS THE NEXT BIG THING IN LENSING

From pure E-modes lensing will create a mixture of E and B-modes. PolarBeaR, ACTPol, SPTPol are gearing up to be

premier CMB lensing experiments using polarization.

Sudeep Das, Argonne

LENSING REMAPS & MAGNIFIES/DE-MAGNIFIES CMB PATCHES.

Simulation from Das & Bode (2008)

LENSING REMAPS & MAGNIFIES/DE-MAGNIFIES CMB PATCHES.

Simulation from Das & Bode (2008)

CMB LENSING IN ACTION ...

Simulation from Das & Bode (2008)

" 2-3 arcmin deflections, coherent over 2-3 degrees, mainly coming from redshifts of 2-3 !"

CMB LENSING IN ACTION ...

Simulation from Das & Bode (2008)

" 2-3 arcmin deflections, coherent over 2-3 degrees, mainly coming from redshifts of 2-3 !"

THERE ARE THREE MAIN AVENUES FOR COSMOLOGY WITH CMB LENSING

Smearing of CMB power spectrum peaks and small scale B-mode power. Reconstruction of the deflection/ convergence field and its power spectrum.

$$\label{eq:phi} \phi = -2\int \underbrace{\frac{d_A(\eta_0-\eta)}{d_A(\eta)d_A(\eta_0)}}_{\text{Geometry}} \Phi(\eta \hat{n},\eta) d\eta$$

 Effective Lensing Potential Geometry Matter potential

Cross correlation of the deflection field with other cosmological probes.

e.g. weak lensing, galaxy counts, CIB ...

- break degeneracies.
- constrain systematics.
- constrain galaxy bias

Highest science impact expected on: neutrino mass sum, (early) dark energy, test of GR, and understanding galaxy evolution.

Sudeep Das, Argonne

TO STUDY THE LENSING EFFECT WE NEED TO LOOK AT THE CMB AT HIGH RESOLUTION

Sudeep Das, Argonne

LENSING SMEARS OUT ACOUSTIC PEAKS

HIGH RESOLUTION AND SENSITIVITY HAS ENABLED ACT, SPT, PLANCK TO DETECT LENSING IN SMEARING OF PEAKS

LENSING INDUCES NON-GAUSSIANITY

Das and Bode (2008)

Dífference between lensed and unlensed CMB

Sudeep Das, Argonne

LENSING RECONSTRUCTION

Given only the lensed CMB sky, can we estimate the deflection field?

DETECTIONS USING HIGHER POINT STATISTICS

WMAP-NVSS ANALYSIS

Detection (3.4 σ) of CMB lensing, via 3-point signal

Smith, Zahn, Dore & Nolta (2007) (see also Hirata et al 2008 and Feng et. al 2013)

Sudeep Das, Argonne

DETECTIONS USING HIGHER POINT STATISTICS

FIRST INTERNAL DETECTION OF LENSING (4-SIGMA) FROM THE CMB 4-POINT FUNCTION

Das, Sherwin et al., PRL 107:021301 (2011)

First CMB-only detection of CMB lensing.

FIG. 2. Convergence power spectrum (red points) measured from ACT equatorial sky patches. The solid line is the power spectrum from the best-fit WMAP+ACT cosmological model with amplitude $A_L = 1$, which is consistent with the measured points. The error bars are from the Monte Carlo simulation results displayed in Fig. 1. The best-fit lensing power spectrum amplitude to our data is $A_L = 1.16 \pm 0.29$ Detection is from 320 sq. degrees of ACT equatorial data only.

Sudeep Das, Argonne

HIGH RESOLUTION AND SENSITIVITY HAS ENABLED ACT, SPT TO BREAK NEW GROUNDS IN ALL THREE AREAS OF CMP LENSING

2000

2000

Sudeep Das, Argonne

SOON WE WILL BE MAKING MATTER BEACH BALLS

Note that this is mostly noise!

CMB LENSING IS GOING TO EXPLODE AS A FIELD IN THE NEXT FEW YEARS

Sudeep Das, Argonne

LENSING MAKES THE CMB UNIQUELY SENSITIVE TO GEOMETRY AND STRUCTURE

THE DEFLECTION POWER SPECTRUM IS A CLEAN AND UNIQUE PROBE

The primary CMB can be kept nearly unchanged under variations of neutrino mass, dark energy equation of state or curvature. But the

deflection field cares about these:

Lensing breaks the angular diameter distance degeneracy!

Sudeep Das, Argonne

 $\ell^2 \partial C_\ell^{dd} / \partial X$

A COOL FIRST APPLICATION: DARK ENERGY FROM CMB ALONE (3.2 SIGMA)

see also van Engelen et al. 2012

Sudeep Das, Argonne

Sherwin, Dunkley, Das et al., PRL 107:021302(2011)

A COOL FIRST APPLICATION: DARK ENERGY FROM CMB ALONE (3.2 SIGMA)

USING CMB POLARIZATION IS THE NEXT BIG THING IN LENSING

From pure E-modes lensing will create a mixture of E and B-modes. PolarBeaR, ACTPol, SPTPol are gearing up to be

premier CMB lensing experiments using polarization.

Sudeep Das, Argonne

POLARIZATION GIVES EXTRA LEVERAGE FOR LENSING RECONSTRUCTION

Gravitational lensing remaps the primordial CMB temperature and polarization fields through the deflection field **d(n)**:

$$\tilde{T}(\mathbf{\hat{n}}) = T(\mathbf{\hat{n}} + \mathbf{d}(\mathbf{\hat{n}}))$$
$$[\tilde{Q} \pm i\tilde{U}](\mathbf{\hat{n}}) = [Q \pm iU](\mathbf{\hat{n}} + \mathbf{d}(\mathbf{\hat{n}}))$$

In the Fourier space, lensing introduces correlations between different Fourier modes ℓ , ℓ' , which are uncorrelated for the primordial signals. This correlation is used to write down an estimator of the deflection field from the observed fields. Schematically:

$$\mathbf{\hat{d}}_{XY}(\mathbf{L}) \propto \tilde{X}(\boldsymbol{\ell})\tilde{Y}(\mathbf{L}-\boldsymbol{\ell})$$

where $X, Y \in (\tilde{T}, \tilde{E}, \tilde{B})$

HIGH RES. POLARIZATION EXPERIMENTS ARE POWERFUL CMB LENSING MACHINES

Assuming no systematics other than instrumental noise, these plots show the signal and noise power spectra for the ACTPol Deep and Wide configurations.

ACTPOL-DEEP: 150 sq-deg @ 3 μ K-arcmin (temp) and 5 μ K-arcmin (pol)

ACTPOL-WIDE: 4000 sq-deg @ 20 µK-arcmin (temp) and 28 µK-arcmin (pol)

ACTPOL: DESIGNED TO BE A POWERFUL CMB LENSING MACHINE

Assuming no systematics other than instrumental noise, these plots show the signal and noise power spectra for the Deep and Wide configurations.

ACTPOL-DEEP: 150 sq-deg @ 3 μ K-arcmin (temp) and 5 μ K-arcmin (pol)

ACTPOL-WIDE: 4000 sq-deg @ 20 µK-arcmin (temp) and 28 µK-arcmin (pol)

DEEP POLARIZATION OBSERVATIONS WILL ENABLE US TO MAP THE DARK MATTER

Sudeep Das, Argonne

DEEP POLARIZATION OBSERVATIONS WILL ENABLE US TO MAP THE DARK MATTER

Sudeep Das, Argonne

MASSIVE NEUTRINOS DO NOT CLUSTER ON SMALL SCALES

Graphics from Y. Wong

SOON, INTERESTING CONSTRAINTS ON NEUTRINO MASS WILL BE COMING IN

CMB LENSING IS A CLEAN AND SENSITIVE PROBE OF NEUTRINO MASS

CMB lensing is sensitive:

The deflection field contains cumulative information from a large range of redshift, peaking around z~ 2-3.

CMB lensing is clean:

CMB redshift known
Most contributions from linear scales.

•No confusion from galaxy bias.

COMBINED WITH PLANCK, HIGH RES EXPERIMENTS WILL BE VERY POWERFUL

COMBINED WITH PLANCK, HIGH RES EXPERIMENTS WILL BE VERY POWERFUL

Assume Planck + 10,000 sq deg high res. data at 5 muk-arcmin.

Sudeep Das, Argonne

THERE ARE THREE MAIN AVENUES FOR COSMOLOGY WITH CMB LENSING

Smearing of CMB power spectrum peaks and small scale Bmode power. Reconstruction of the deflection/ convergence field and its power spectrum.

$$\label{eq:phi} \phi = -2\int \underbrace{\frac{d_A(\eta_0-\eta)}{d_A(\eta)d_A(\eta_0)}}_{\text{Geometry}} \Phi(\eta \hat{n},\eta) d\eta$$

Cross correlation of the deflection field with other cosmological probes. e.g. weak lensing, galaxy

counts, CIB ...

- break degeneracies.
- constrain systematics.
- constrain galaxy bias

Highest science impact expected on: neutrino mass sum, dark energy, test of GR, and understanding galaxy evolution.

Sudeep Das, Argonne

CMB LENSING KERNEL - IDEAL FOR CROSS CORRELATIONS

Kernel is broad and large over z~0.5-4

LOGIC: GALAXIES TRACE THE SAME LARGE SCALE STRUCTURE THAT LENS THE CMB:

Therefore, a non-zero cross correlation is expected between galaxies and reconstructed deflection field *Smith, Zahn, Dore & Nolta 2007 (see also Hirata et al 2008)*

NVSS: NRAO VLA Sky Survey

Courtesy: Kendrick Smith

Mostly extragalactic sources: AGN-powered radio galaxies Quasars Star-forming galaxies 1.4 GHz source catalog, 50% complete at 2.5 mJy

Well-suited for cross-correlating to WMAP lens reconstruction:

galaxy counts (masked) Nearly full sky coverage $(f_{sky} = 0.8)$ Low shot noise $(b_g = 2, N_{gal} = 1.8 \times 10^6)$ High redshift $(z_{median} = 2)$

Sudeep Das, Argonne

SDSS X ACT QUASAR-CMB LENSING CROSS-CORRELATION

SDSS X ACT QUASAR-CMB LENSING CROSS-CORRELATION

Cross-power with SDSS photometric QSO catalog (Bovy et al 2010):

4 sigma detection (quasars do trace mass)

- Constraint on bias (assuming shape of redshift dependence from Shen et al. 2008): b(z~1.4)=2.5 ± 0.6
- This translates to a halo mass of $log_{10}(M_{200}/M_{sun})=$ 12.9 +0.3/-0.5

See also, Bleem, van Engelen et al. 2012

Sudeep Das, Argonne

PLANCK CROSS CORRELATIONS SHOW THE PROMISE ALREADY!

Fig. 17. Cross-spectra of the *Planck* MV lensing potential with several galaxy catalogs, scaled by the signal-to-noise weighting factor $A_L^{g\phi}$ defined in Eq. (52). Cross-correlations are detected at approximately 20σ significance for NVSS, 10σ for SDSS LRGs and 7σ for both MaxBCG and WISE.

CIB X CMB LENSING CORRELATIONS

CIB (Cosmic Infrared Background) and CMB lensing kernels are made-for-each-other!

CIB X CMB LENSING CORRELATIONS

SPT I 50 GHz x Herschel/SPIRE Holder et al. (2013)

Sudeep Das, Argonne

CIB X CMB LENSING CORRELATIONS

-3.60x10⁻⁴ 2.56x10⁻⁴ 8.73x10⁻⁴ -6.00x10⁻⁴ 2.91x10⁻¹¹ 6.00x10⁻⁴ -9.33x10⁻⁶ Planck temp x Planck CMB lensing

Sudeep Das, Argonne

Star

0.00

0.00

3.73x10

9.33x10

CROSS CORRELATIONS: SYNERGY WITH GALAXY AND WEAK LENSING SURVEYS (MS-DESI, DES, LSST)

Sudeep Das, Argonne

A PILOT CMB LENSING X COSMIC SHEAR CROSS-CORRELATION STUDY WITH CFHT ON STRIPE 82 IS UNDERWAY

CMB lensing X Galaxy Shear

In collaboration with Alexie Leauthaud (LBL/IPMU Japan), Catherine Heymans, Jean Paul Knieb (Merseille), Ludovic Van Waerbeke (UBC), Martin Makler (ICRA/CBPF - LIneA, Brazil) and the Canada France Hawaii Telescope Team.

Das, Leauthaud, Hand, Sherwin et al., in prep.

Sudeep Das, Argonne

Example: Cosmic shear multiplicative bias

$$\kappa_{opt} = m \times \kappa_{true}$$

$$\frac{\text{CMBL} \times \text{WL}}{\text{CMBL} \times \text{CMBL}} = m \int \frac{d\eta \left(\frac{g_{opt}(\eta)}{a(\eta)}\right) \left(\frac{g_{CMB}(\eta)}{a(\eta)}\right) P\left(\frac{l}{d_A},\eta\right)}{\int d\eta \left(\frac{g_{CMB}(\eta)}{a(\eta)}\right)^2 P\left(\frac{l}{d_A},\eta\right)}$$

(Vallinotto 2012)

26th International Symposium on LEPTON PHOTON INTERACTIONS at HIGH ENERGIES

Primary systematics: Cosmic shear multiplicative bias $\begin{aligned} \kappa_{opt} &= m \times \kappa_{true} \\ C_{\ell}^{\kappa_{\rm CMB}\Sigma} &= \frac{3}{2} \Omega_{\rm m} H_0^2 \int d\eta b_{\ell}(\eta) W_f(\eta) \frac{g_{\rm CMB}(\eta)}{a(\eta)} P(\frac{\ell}{d_A}, \eta), \\ C_{\ell}^{\kappa_{\rm opt}\Sigma} &= m \frac{3}{2} \Omega_{\rm m} H_0^2 \int d\eta \ b_{\ell}(\eta) W_f(\eta) \frac{g_{\rm opt}(\eta)}{a(\eta)} P(\frac{\ell}{d_A}, \eta). \end{aligned}$

$$\frac{C_{\ell}^{\kappa_{\rm opt}\Sigma}}{C_{\ell}^{\kappa_{\rm CMB}\Sigma}} = m \frac{g_{\rm opt}(\eta)}{g_{\rm CMB}(\eta)}$$

Primary systematics: Cosmic shear multiplicative bias

Sudeep Das, Argonne

ACTPol+ HSC+ BOSS

For the BOSS-like survey, we assume three redshift bins 0.3 < z < 0.4, 0.4 < z < 0.5 and 0.5 < z < 0.6 with the linear bias parameter of 2.0 in each bin (which are marginalized over), and a total galaxy density of 0.011 per arcmin².

FOR HSC $z_0 = 0.69$ $N_g = 35$ galaxies per arcmin^2

Das, Spergel, Errard et al., in prep.

Sudeep Das, Argonne

June 27, 2013

c.

ACTPol+ HSC+ BOSS

54

ACTPc

TABLE I. Estimated marginalized 1- σ error on the shear multiplicative bias parameter $m_i = (1 + \alpha_i)$ in the tomographic bin *i*, and the galaxy bias parameter b_j in spectroscopic bin *j* for various ways of combining data sets.

Bias	Fiducial	CMBL	CMBL	CMBL	CMBL
parameter	value	+ optL	× optL	+ optL	$\times \text{ optL}$
				+ gal.	\times gal
α_1	0.008	0.058	0.026	0.047	0.021
α_2	0.014	0.063	0.010	0.054	0.008
α_3	0.020	0.063	0.007	0.053	0.005
<i>b</i> ₁	2.000	-	-	0.070	0.053
b2	2.000	-	-	0.058	0.044
b ₃	2.000	-	-	0.073	0.055

Das, Sp

Sude

 w_0

TESTING GENERAL RELATIVITY

Sudeep Das, Argonne

SUMMARY

- Two keywords in the future of CMB: high resolution, polarization
- CMB lensing is a new and powerful tool. First measurements and applications and coming in.
- High resolution polarization experiments like PolarBeaR, ACTPol and SPTPol will be primarily CMB lensing machines.
- CMB lensing will provide new constraints on neutrino mass, dark energy, curvature, ...
- A large array of cross-correlation projects are possible with the wealth of data in multiple frequencies. These will help constrain galaxy formation models, GR. geometry, and other cosmological parameters.
- Be prepared to witness a very productive interplay of CMB, fundamental physics, and astrophysics in the coming years!

