Exploring New Frontiers:

New, Light Weakly-Coupled Particles (as DM)

Rouven Essig

C.N.Yang Institute for Theoretical Physics Stony Brook University

Lepton Photon Symposium June 2013

New, light weakly-coupled particles are motivated by dark matter, theory, strong CP problem, muon g-2, and astrophysics anomalies New, light weakly-coupled particles are motivated by dark matter, theory, strong CP problem, muon g-2, and astrophysics anomalies

Topics covered

- axions & axion-like particles
- dark photons
- sub-GeV dark matter

many topics not covered, but for a summary see e.g. "Fundamental Physics at the Intensity Frontier" 1205.2671

The success of the Standard Model is a triumph

But we are in a new era

The success of the Standard Model is a triumph

But we are in a new era

Pre-LHC:

discovery of something new at LHC was guaranteed

The success of the Standard Model is a triumph

But we are in a new era

Pre-LHC:

discovery of something new at LHC was guaranteed

And now?

We know there is more new physics, but...

no experiment currently running or planned for the future is guaranteed to discover a new particle/force

Some of our most-cherished ideas have not yielded any success (at least, thus far)

e.g. Naturalness of Weak-scale, WIMP miracle

Some of our most-cherished ideas have not yielded any success (at least, thus far)

e.g. Naturalness of Weak-scale, WIMP miracle

Should we be worried?

Some of our most-cherished ideas have not yielded any success (at least, thus far)

e.g. Naturalness of Weak-scale, WIMP miracle

Should we be worried?

It is of course too early to be worried, but we shouldn't sit idly by either

In addition to pursuing our "standard" new-physics targets, we should:

In addition to pursuing our "standard" new-physics targets, we should:

- expand our experimental & theoretical investigations (there are many other motivated ideas for new physics)
- pursue several relatively low-cost & motivated experiments (several nice suggestions exist)
- aim to fully exploit existing facilities/technologies, but also develop new ones for a few particularly compelling ideas

It doesn't have to be at the Weak-scale!

It doesn't have to be at the Weak-scale!

LHC results are challenging the connection between dark matter and Weak-scale naturalness

It doesn't have to be at the Weak-scale!

LHC results are challenging the connection between dark matter and Weak-scale naturalness

Dark matter suggests the presence of a dark sector, neutral under all Standard Model forces

It doesn't have to be at the Weak-scale!

LHC results are challenging the connection between dark matter and Weak-scale naturalness

Dark matter suggests the presence of a dark sector, neutral under all Standard Model forces

many possible dark sectors exist motivated not just by dark matter emphasizes the need to broaden experimental searches

A dark sector consists of particles that do not interact with known forces

A dark sector consists of particles that do not interact with known forces

forces + particles dark matter?

strong, weak, EM

A dark sector consists of particles that do not interact with known forces

strong, weak, EM

Dark Sector forces + particles dark matter?

unlike matter that interacts with known forces, dark sector particles can be <u>well below Weak-scale</u>

Portals?

only a few important possibilities exist that are allowed by Standard Model symmetries

Portals

"Axion"

$$\frac{1}{f_a} F_{\mu\nu} \tilde{F}^{\mu\nu} \boldsymbol{a}$$

axions & axion-like particles (ALPs)

• "Vector" $\epsilon F^{Y,\mu\nu}F'_{\mu\nu}$ de

• "Higgs" $\lambda H^2 S^2 + \mu H^2 S$ exotic Higgs decays?

• "Neutrino" $\kappa (HL)N$

sterile neutrinos?

Portals

our focus today

• "Axion"	$\frac{1}{f_a} F_{\mu\nu} \tilde{F}^{\mu\nu} a$	axions & axion-like particles (ALPs)
• "Vector"	$\epsilon F^{Y,\mu u}F'_{\mu u}$	dark photon A′
• "Higgs"	$\lambda H^2 S^2 + \mu H^2 S$	exotic Higgs decays?
• "Neutrino"	$\kappa (HL) N$	sterile neutrinos?

Portals

our focus today

• "Axion"
$$\frac{1}{f_a} F_{\mu\nu} \tilde{F}^{\mu\nu} a$$
axions & axion-like
particles (ALPs)• "Vector" $\epsilon F^{Y,\mu\nu} F'_{\mu\nu}$ dark photon A'• "Higgs" $\lambda H^2 S^2 + \mu H^2 S$ exotic Higgs decays?• "Neutrino" $\kappa (HL)N$ sterile neutrinos?

Axion

explains why CP violation in strong force is so small i.e. solves strong CP problem

axion is associated with spontaneous breaking at a scale f_a of an approximate global Peccei-Quinn (PQ) symmetry

$$m_a \sim rac{\Lambda_{
m QCD}^2}{f_a} \simeq 0.6 \ {
m meV} \ rac{10^{10} \ {
m GeV}}{{
m f}_{
m a}}$$
 naturally light

very generally:

breaking of non-PQ approximate global symmetries at high scale can give Axion-Like Particles with small masses

very generally:

breaking of non-PQ approximate global symmetries at high scale can give Axion-Like Particles with small masses

generic in many scenarios

very generally:

breaking of non-PQ approximate global symmetries at high scale can give Axion-Like Particles with small masses

generic in many scenarios

axions & ALPs are excellent dark matter candidates

Couplings to ordinary matter

axions couple to fermions, photons, gluons

Couplings to ordinary matter

axions couple to fermions, photons, gluons

e.g. coupling to photons:

for ALPs, coupling to photons can be different (even zero)

Couplings to ordinary matter

axions couple to fermions, photons, gluons

e.g. coupling to photons:

for ALPs, coupling to photons can be different (even zero) use this coupling to probe photon to axions/ALP conversions

Axions & ALPs

Jaeckel, Redondo, Ringwald, ...

Axions & ALPs

axion band

Jaeckel, Redondo, Ringwald, ...

Axions & ALPs

Many experimental opportunities, e.g.

- Light-shining-through-walls
- helioscopes
- haloscopes (e.g. ADMX w/ tunable microwave cavity)

Jaeckel, Redondo, Ringwald, ...

Axions & ALPs

Jaeckel, Redondo, Ringwald, ...

Many experimental opportunities, e.g.

- Light-shining-through-walls
- helioscopes
- haloscopes (e.g. ADMX w/ tunable microwave cavity)

other ideas being developed, e.g. using molecular interferometry or NMR

e.g. Graham, Rajendran et.al.
Current Limits & Prospects

Axions & ALPs

axion band is wellmotivated target and should be pursued

other regions motivated too (theory+DM+astro hints)

Jaeckel, Redondo, Ringwald, ...

Portals

our focus today

• "Axion"	$\frac{1}{f_a} F_{\mu\nu} \tilde{F}^{\mu\nu} a$	axions & axion-like particles (ALPs)
• "Vector"	$\epsilon F^{Y,\mu u}F'_{\mu u}$	dark photon A′
 "Higgs" 	$\lambda H^2 S^2 + \mu H^2 S$	exotic Higgs decays?
• "Neutrino"	$\kappa (HL)$ N	sterile neutrinos?

Known Forces

Dark Sector

consider a very simple Dark Sector

consider a very simple Dark Sector

Known Forces

(+ possibly dark matter)

consider a very simple Dark Sector

Standard Model

$$\gamma$$
 A'
 Dark Sector

 g
 W^{\pm}, Z
 γ
 ϵ
 A' (massive)

ordinary photon & A' can mix

$$\Delta \mathcal{L} = \frac{\epsilon}{2} F^{Y,\mu\nu} F'_{\mu\nu}$$

"Kinetic Mixing" Holdom

Galison, Manohar

Generating Kinetic Mixing

e.g. loops of heavy particles charged under photon and A'

$$\gamma \sim A'$$

 $\epsilon \sim 10^{-8} - 10^{-2}$

a motivated target

Mixing with photon allows:

Mixing with photon allows:

 $A' \leftrightarrow \gamma$ "oscillation"

Mixing with photon allows:

 $A' \leftrightarrow \gamma$ "oscillation"

and

A' coupling to quarks and charged leptons:

low-mass (< MeV) A' parameter space

Experimental techniques often similar to axion/ALP searches

 origin of GeV-scale can be naturally related to Weak-scale in some models

e.g. Arkani-Hamed & Weiner; Cheung, Ruderman, Wang, Yavin; Morrissey, Poland, Zurek;

 $m_{A'} \sim \sqrt{\epsilon} M_Z \lesssim 1 \text{ GeV}$

 origin of GeV-scale can be naturally related to Weak-scale in some models

e.g. Arkani-Hamed & Weiner; Cheung, Ruderman, Wang, Yavin; Morrissey, Poland, Zurek;

$$m_{A'} \sim \sqrt{\epsilon} M_Z \lesssim 1 \,\,\mathrm{GeV}$$

• A' may explain observed muon g-2 (>3 σ discrepancy)

Pospelov Boehm, Fayet

 origin of GeV-scale can be naturally related to Weak-scale in some models

e.g. Arkani-Hamed & Weiner; Cheung, Ruderman, Wang, Yavin; Morrissey, Poland, Zurek;

$$m_{A'} \sim \sqrt{\epsilon} M_Z \lesssim 1 \,\,\mathrm{GeV}$$

• A' may explain observed muon g-2 (>3 σ discrepancy)

Pospelov Boehm, Fayet

 Hints of new dark matter interactions from various DM indirect and direct detection anomalies

> Arkani-Hamed et.al.; Cholis et.al.; Pospelov & Ritz; Hooper, Weiner, Xue

e⁺e⁻ colliders

RE, Schuster, Toro Batell, Pospelov, Ritz Reece, Wang Borodatchenkova et.al. Fayet

e⁺e⁻ colliders

RE, Schuster, Toro Batell, Pospelov, Ritz Reece, Wang Borodatchenkova et.al. Fayet

e⁺e⁻ colliders

RE, Schuster, Toro Batell, Pospelov, Ritz Reece, Wang Borodatchenkova et.al. Fayet

B-factories, Phi-factories searches completed/ongoing/planned

Bjorken, RE, Schuster, Toro Freytsis, Ovanesyan, Thaler Reece & Wang

New & old e⁻ fixed target experiments

Bjorken, RE, Schuster, Toro Freytsis, Ovanesyan, Thaler Reece & Wang

New & old e⁻ fixed target experiments

Bjorken, RE, Schuster, Toro Freytsis, Ovanesyan, Thaler Reece & Wang

New & old e⁻ fixed target experiments

e.g. EI37, APEX, HPS, DarkLight, MAMI, VEPP-3, ...

Proton-beam fixed target experiments

Batell, Pospelov, Ritz RE, Harnik, Kaplan, Toro

Proton-beam fixed target experiments

Batell, Pospelov, Ritz RE, Harnik, Kaplan, Toro

Example: produce A' from pion decays

Proton-beam fixed target experiments

Batell, Pospelov, Ritz RE, Harnik, Kaplan, Toro

Example: produce A' from pion decays

e.g. LSND, MINOS, MiniBooNE, Project X

Current constraints

Current constraints

Pospelov Bjorken, RE, Schuster, Toro RE, Schuster, Toro, Wojtsekhowski KLOE Collaboration APEX Collaboration MAMI/A1 Collaboration

MAMI/AI Collaboration

need new experiments to probe this region

Bjorken, RE, Schuster, Toro

New Experiments

@JLab (USA): APEX, HPS, DarkLight in Russia: VEPP-3 in Germany: Mainz (not shown) look for A' \rightarrow e⁺e⁻ resonance or displaced vertex (unique to HPS)

No time to discuss other searches, e.g. Dark Sector ("Hidden Valley") explorations at Tevatron/LHC

Strassler, Zurek

Arkani-Hamed, Weiner Baumgart, Cheung, Ruderman, Wang, Yavin Shih, Thomas

Recall:

simplest Dark Sector consists of just an A' at low energies

Recall:

simplest Dark Sector consists of just an A' at low energies

Dark Sector can easily be more complicated, so must look for other signals too
Dark Photons

Recall:

simplest Dark Sector consists of just an A' at low energies

Dark Sector can easily be more complicated, so must look for other signals too

Example: sub-GeV Dark Matter + A'

sub-GeV Dark Matter

very rich phenomenology (much of it still under active investigation)

Can probe in various ways:

- colliders
- fixed-target (p & e⁻)
- direct detection
- indirect detection

Low-energy e⁺e⁻ colliders

RE, Mardon, Papucci, Volansky, Zhong

(to appear)

Example:

Low-energy e⁺e⁻ colliders

RE, Mardon, Papucci, Volansky, Zhong

(to appear)

Example:

Low-energy e⁺e⁻ colliders

Batell, Pospelov, Ritz Deniverville, Pospelov, Ritz Aguilar-Arevalo et.al. (MiniBooNE proposal)

Batell, Pospelov, Ritz Deniverville, Pospelov, Ritz Aguilar-Arevalo et.al. (MiniBooNE proposal)

Example: produce A' from pion decays

Batell, Pospelov, Ritz Deniverville, Pospelov, Ritz Aguilar-Arevalo et.al. (MiniBooNE proposal)

Example: produce A' from pion decays $A' \rightarrow DM+DM$

Batell, Pospelov, Ritz Deniverville, Pospelov, Ritz Aguilar-Arevalo et.al. (MiniBooNE proposal)

Example: produce A' from pion decays $A' \rightarrow DM+DM$

DM recoils of e⁻/nucleon in detector

Batell, Pospelov, Ritz Deniverville, Pospelov, Ritz Aguilar-Arevalo et.al. (MiniBooNE proposal)

Example: produce A' from pion decays $A' \rightarrow DM+DM$

DM recoils of e⁻/nucleon in detector

Proposal for more MiniBooNE running

Aguilar-Arevalo et.al. (MiniBooNE proposal)

Electron-beam fixed target experiments

to appear: Diamond, Schuster; Krnjaic, Izaguirre, Schuster, Toro

Example: produce DM directly from on/off-shell A'

DM recoils of e⁻/nucleon in detector

plenty of room for future experiments e.g. JLab, Mainz, ...

Direct Detection RE,

RE, Mardon, Volansky

probe DM in our halo scattering off e.g. electrons in detector

Direct Detection

RE, Mardon, Volansky

probe DM in our halo scattering off e.g. electrons in detector

first direct detection limits on sub-GeV DM, using published XENON10 data

RE, Manalaysay, Mardon, Sorensen, Volansky

Direct Detection

RE, Mardon, Volansky

probe DM in our halo scattering off e.g. electrons in detector

first direct detection limits on sub-GeV DM, using published XENON10 data

> RE, Manalaysay, Mardon, Sorensen, Volansky

lots of potential for current & new experiments!

see also Graham et.al.

• Dark matter points to a Dark Sector

Conclusions

- Dark matter points to a Dark Sector
- New, light weakly-coupled particles are well-motivated
 - axions, ALPs, dark photons, ...
 - motivated by DM, strong CP, muon g-2, astro anomalies, theory...

Conclusions

- Dark matter points to a Dark Sector
- New, light weakly-coupled particles are well-motivated
 - axions, ALPs, dark photons, ...
 - motivated by DM, strong CP, muon g-2, astro anomalies, theory...
- experiments use intense beams & sensitive detectors
 - often make use of existing facilities/technologies (i.e. ~inexpensive)
 - could benefit from further technological developments

Conclusions

- Dark matter points to a Dark Sector
- New, light weakly-coupled particles are well-motivated
 - axions, ALPs, dark photons, ...
 - motivated by DM, strong CP, muon g-2, astro anomalies, theory...
- experiments use intense beams & sensitive detectors
 - often make use of existing facilities/technologies (i.e. ~inexpensive)
 - could benefit from further technological developments
- support for these explorations is crucial
 - we don't know which guiding principle for finding new physics is reliable; must explore all motivated possibilities

Backup

Axion/ALPs: hints from astro puzzles?

Is universe more transparent than expected to high energy &-rays?

γ-ALP conversion?

Roncadelli, de Angelis, ...

Isern, Garcia–Berro, Torres, Catalan

Do white dwarf stars cool faster than expected? cooling enhanced by

axion/ALP radiation?

How to look for Axion and ALPs?

Best probes from γ -axion/ALP conversion

"Light-shining-through-walls" Okun; Sikivie; Anselm; van Bibber;

LIPSS (Jlab), BFRT (BNL), BMV (LULI), GammeV (Fermilab), ALPS (DESY), OSQAR (CERN), PVLAS (INFN), ...

Need large magnets, powerful lasers, optical cavities

How to look for Axion and ALPs?

Best probes from y-axion/ALP conversion

Helioscopes: stare at the sun

Sikivie;

SHIPS, CAST, SUMICO, IAXO, ...

Need large magnets, sensitive detectors

How to look for Axion and ALPs?

Best probes from y-axion/ALP conversion

Resonant Cavities with Large Magnetic Field

Sikivie;

ADMX, ADMX-HF, ...

How look for low-mass A'?

"Light-shining-through-walls" (cf. axions)

$$\gamma A'$$

LIPSS (Jlab), BFRT (BNL), BMV (LULI), GammeV (Fermilab), ALPS (DESY), OSQAR (CERN), PVLAS (INFN), ...

Need powerful lasers but no magnets

How look for low-mass A'?

Helioscopes: stare at the sun (cf. axions)

Okun, ...

TSHIPS, CAST, SUMICO, IAXO, ...

Dark Photons

Recall: simplest Dark Sector consists of just an A'

Dark Sector can easily be more complicated, so must look for other signals too

Example 2: non-Abelian or dark-higgs

Several searches done/ongoing/planned

Examples only:

Done $4e, 4\mu, 2e + 2\mu$

BaBar [Graham & Roodman]

non-Abelian hidden sectors (many gauge bosons)

light hidden-sector Higgs boson 6ℓ Done

arXiv:1202.1313 [Echenard]

 2ℓ In progress

Higgs'-strahlung

[Batell, Pospelov, Ritz]