
CMSSW ON ARMV7-A ISA
DAVID ABDURACHMANOV
CERN, CMS && Vilnius University (VU)

AGENDA
1. Introduction to hardware
2. Status of CMSSW port to ARMv7-A
3. ROOT linCintex port to ARMv7-A
4. Development issues and solutions
5. Cycle counter
6. VDT NEON vectorization
7. Future work

WHY?
We want to have cross-compilation toolchain (cmsBuild)
and ARMv7-A provides a radically different architecture
compared to i*86/x86_64 we are used to.
Every migration to new OS or/and new compilers or
compiler versions allows us to discover a number of
hidden issues in our code base (CMSSW) and build tools.

ARMV7-A HARDWARE WE USE
CMS ARM Cluster: armcms{01,02}.cern.ch
Plus, an additional non-public machine is used for
development.
We are using ODROID-U2:

CPU is quad-core Exynos4412 Prime at 1704Mhz.
CPU is capable running at 2000Mhz (might yield
undefined behavior at 2000Mhz).
Cores are Cortex-A9 MPCore.
2048MB LP-DDR2 memory (512MB per core).
eMMC, uSD, USB 2.0, Ethernet RJ-45.

WHAT MARKET THINKS
HP says:

Server-grade ARM is available starting 2012 based on
Calxeda highbank (current gen Cortex-A9 cores).
Boston Viridis:

2U contains 48 nodes (each has 4 quad-core SoC chips,
1GB per core). That's 192 cores per 2U enclosure.
It requires <300W (5W per node) per 2U enclosure.
That's 4032 cores, 4TB of RAM under 6.3kW per 42U
rack.

“89% less energy, 94% less space, and 63%
less cost”

CMSSW ON ARMV7-A
Initial port was started on QEMU (incl. Linaro port).
QEMU uses a single thread to emulate all virtual CPUs.
Slow.
Parallel execution of virtual cores possible, but not
upstream. Alternative forks exists, .e.g, COREMU, but no
stable support for ARM
QEMU is buggy by experience. Bug report filed.
Fedora 17 ARM was picked as Fedora -> RHEL -> SLC.
Now using Fedora 18 ARM Remix (kernel 3.0.65+).
Fedora 17/18 should be similar to RHEL 7.
Official CMS architecture target: fc18_arm7hl_gcc480.

Fedora 18 ARM, ARMv7-A Hard Floats, GNU GCC 4.8.0

CMSSW IS BUILT IN STAGES #1
1. build_rpm.sh builds prerequisites for Bootstrap Driver Kit.

Mainly builds our RPM for packaging.
2. Using cmsBuild build bootstrap-driver, cms-common, lcg-

dummy, and local-cern-siteconf targets.
3. Then build cmssw-tool-conf target, which holds all

CMSSW prerequisites.
4. Then build cmssw target.

CMSSW IS BUILT IN STAGES #2
1. Stage1 is done. Takes 0:30 for compilation.
2. Stage2 is done. Takes 3:30 for compilation.

External package not available for ARM: oracle
(proprietary binaries only exist for i*86 and x86_64).

3. Stage3 is done. Takes about 12:00 for compilation.
Compilation time could be improved. CPU is not utilized
efficiently.

4. We are Stage4 currently working on compiling
CMSSW_6_2_X on ARMv7-A. Takes 25:30 for compilation.

6 out of 1116 packages are affected by missing external
packages.

ROOT 5 ON ARMV7-A ISA
Copy missing iosenum file

Configure with target linuxarm
Patch Cintex to build on armv7l machine
All the details

cp ./cint/iosenum/iosenum.linux3 ./cint/iosenum/iosenum.li
nuxarm3

savannah.cern.ch/bugs/?100934

https://savannah.cern.ch/bugs/?100934

PORTING CINTEX
Cintex was written for i*86 and x86_64 targets
libCintex includes compiled-in function calls (templates)
via function pointer:

Where FUNCPATTERN and DATAPATTERN:

Are compiled-in patterns later substituted with real
addresses.

static void f0a() {
 typedef void (*f_t)(void*);
 ((f_t)FUNCPATTERN)((void*)DATAPATTERN);
}

#define FUNCPATTERN 0xFAFAFAFAL
#define DATAPATTERN 0xDADADADAL

F0A() X86_64 VARIANT
On x86_64 compiled-in patterns are easily noticeable. Easy

to find offsets and modify in-memory addresses for
FUNCPATTERN and DATAPATTERN.

0000000000000000 <_ZN4ROOT6CintexL3f0aEv>:
 0: 48 bf da da da da da mov $0xdadadadadadadada,%rdi
 7: da da da
 a: 48 b8 fa fa fa fa fa mov $0xfafafafafafafafa,%rax
 11: fa fa fa
 14: ff e0 jmpq *%rax
 16: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax,%rax,1)
 1d: 00 00 00

F0A() ARMV7L (ARM MODE) VARIANT
Fixed-length (32-bit) instructions.
Requires two MOV* instructions to copy 32-bit address.
Compiled-in patterns are not noticeable, e.g., e30f3afa.
Where is 0xfafa?
It's MOVW A2 encoding instruction where

i.e., 0xfafa is divided into two bit sequences inside the
instruction.

imm32 = ZeroExtend(imm4:imm12, 32);

00002364 <_ZN4ROOT6CintexL3f0aEv>:
 2364: e92d4800 push {fp, lr}
 2368: e28db004 add fp, sp, #4
 236c: e30f3afa movw r3, #64250 ; 0xfafa
 2370: e34f3afa movt r3, #64250 ; 0xfafa
 2374: e30d0ada movw r0, #56026 ; 0xdada
 2378: e34d0ada movt r0, #56026 ; 0xdada
 237c: e12fff33 blx r3
 2380: e8bd8800 pop {fp, pc}

FINDING COMPILED-IN PATTERNS
The following

becomes

Ignores <cond> and <Rd> fields in the instruction. Checks
how top and low address halves should look in the

instruction.

if (*(size_t*)b == DATAPATTERN) fa_offset = o;

if (((*(size_t*)b) & 0x000F0FFFUL) == 0x000D0ADAUL &&
 ((*((size_t*)b + 1)) & 0x000F0FFFUL) == 0x000D0ADAUL)
 fa_offset = o;

CHANGING COMPILED-IN PATTERNS

A bit more complicated.
The snippet is only safe on ARMv7-A

size_t addr16, addr16_mov;
// Lower part (MOVW)
// 32-bit aligned lower part
addr16 = (size_t)address & 0x0000FFFFUL;
// make imm4:imm12 bit mask
addr16_mov = (addr16 | ((addr16 << 4) & 0x000F0000UL)) & 0x000F0FFFUL;
// apply address correction
(size_t)destination = (*(size_t*)destination & 0xFFF0F000UL) | addr16
_mov;
// Top part (MOVT)
addr16 = ((size_t)address & 0xFFFF0000UL) >> 16;
addr16_mov = (addr16 | ((addr16 << 4) & 0x000F0000UL)) & 0x000F0FFFUL;
((size_t)destination + 1) = (*((size_t*)destination + 1) & 0xFFF0F000
UL) | addr16_mov;

ROOT SUMMARY
The method used in Cintex is not safe for i*86/x86_64 as it
heavily relies on compiler optimizer picked instructions.
Tested only on GNU GCC 4.8.0 in CMSSW.
Should be safe in ARM mode, but not in Thumb mode.
Depends on MOV{W,T} A2 encoding instructions, but
other encodings could be implemented also.
As long as we compile ROOT and understand how
libCintex works, we should be fine.

GENERAL ISSUES
PORTING SOFTWARE

based experience

SIGNEDNESS IS DIFFERENT ON ARM/POWER
On INTEL/AMD by default char and bit-fields are signed.
On ARM/POWER their are unsigned.
The following is not portable code:

Warning on INTEL/AMD (singed):

Could use -funsigned-char / -fsigned-char and -funsigned-
bitfields / -fsigned-bitfields to tell GCC what signedness you
need.

int main(void) {
 char c = 255;
 if (c > 128) {
 return 0; /* unsigned */
 } else {
 return 1; /* signed */
 }
 }

warning: comparison is always false due to limited range of data type [-Wtyp
e-limits]

SIGNEDNESS HITS GETCHAR-LIKE FUNCTIONS
Mostly noticed in CASTOR.
The following is incorrect usage:

It should be like:

EOF is -1.

char c;
while ((c = getchar()) != EOF) { /* magic with c */ }

int i;
while ((i = getchar()) != EOF) { unsigned char c = i; /* magic with actual
char */ }

ARM DO NOT SUPPORT -M32/-M64
Review your Makefiles that on armv7l (32-bit) target -m32

compiler option would not be used. Otherwise compiler will
fail with unrecognized option.

ERROR: INTEGER CONSTANT IS TOO LARGE FOR 'LONG' TYPE #1
/usr/include/bits/wordsize.h

/usr/include/stdint.h

Pre-processor

#define __WORDSIZE 32

#if __WORDSIZE == 64
typedef unsigned long int uint64_t;
#else
__extension__
typedef unsigned long long int uint64_t;
#endif

#define __SIZEOF_INT__ 4
#define __SIZEOF_POINTER__ 4
#define __SIZEOF_LONG__ 4
#define __SIZEOF_LONG_LONG__ 8

ERROR: INTEGER CONSTANT IS TOO LARGE FOR 'LONG' TYPE #2
VDT failed at:

Initial fix:

But ull suffix is C++11 and compiler complains (-pedantic).
Now we compile in C++11. That's required in CMSSW.

const uint64_t mask=0x8000000000000000;

“To make an integer constant of type
unsigned long long int, add the suffix `ULL' to

the integer.”

const uint64_t mask=0x8000000000000000ULL;

CHECK IF COMPILER SUPPORT SSE AND AVX (INTEL/AMD)
General rule: ask compiler, do not check the current
system for capabilities. Compiler knows your target.
Some packages by default assume that SSE is available in
the machine. Not true on ARM.
Do not use /proc/cpuinfo or sysctl to detect CPU
capabilities.
With autoconf check if compiler supports the flag.
With CMake write FindSSE.cmake, which compiles a
series of conftest.c to check compiler flags.

cc1: error: unrecognized command line option "-msse4"

CORRECTLY DETECT 32/64-BIT TARGETS
General rule: test features, not platforms.
Do not use uname -m to detect 32 or 64 bits based on
machine.
Kernel might still be i*86, yet the system is x86_64.
Use __SIZEOF_POINTER__ macro to check if target is 32 or
64 bit.

#define __SIZEOF_POINTER__ 8

VIRTUAL MEMORY EXHAUSTED
17 object files failed to compile:

Translation Units (TU) requires high amount of memory to
compile.
Mostly happens with Reflex ROOT dictionaries.
Resource limits:

Most likely we hit high memory (user space) limit.
According to /proc/meminfo

1311MB is the limit for user space. Going above malloc()
would return NULL.
Solution: divide TUs into a smaller units.

virtual memory exhausted: Cannot allocate memory

-m: resident set size (kbytes) unlimited
-v: address space (kbytes) unlimited

HighTotal: 1342464 kB

INLINE ASSEMBLY AND INTRINSICS
Developers assume that their code will compile on specific

machine with needed capabilities. No or not sufficient
enough guards are provided for such parts of the code.

Do not assume and use pre-processor macros to protect all
parts of the code.

NEON intrinsics are available in arm_neon.h. But developers
should depend on compiler auto-vectorization capabilities

instead.

CYCLE COUNTER
INTEL provides Time Stamp Counter (TSC) register since
Pentium-era.
RDTSC is used to retrieve TSC value.
ARMv7-A provides Performance Measurement Unit
(PMU), which has PMCCNTR (32-bit cycle count register).
It can increment once every processor clock cycle or once
every 64 cycles.
PMU is not visible in user mode, needs to enabled in
privileged mode. Easiest way is to write a kernel module,
which on initialization enables PMU for user mode.

VDT AND VECTORIZATION
By default GCC 4.8.0 is configured with vfpv3-d16 as FPU.
NEON (SIMD unit) is also available: -mfpu=neon
VDT 0.3.2 introduces NEON vectorization.
For SP we have successful vectorization, e.g.:

Fast_Expf (72.66ns) - Fast_Expfv (26.72ns)
Fast_Logf (69.61ns) - Fast_Logfv (29.11ns)

But fails in others, e.g.:
Fast_Sinf (54.76ns) - Fast_Sinfv (66.21ns)
Fast_Cosf (52.00ns) - Fast_Cosfv (63.11ns)

DP does not vectorize. NEON does not support DP. DP will
be supported in ARMv8 AArch64 mode.

FUTURE WORK
Fix current issues with CMSSW_6_2_X on ARMv7-A.
Prepare official integration builds (IB).
Clean up CMSSW and external tool recipes (RPM SPECs)
to be cross-platform friendly.
Prepare cmsBuild for cross-compilation, which currently is
not supported. On ARM target we are lucky to build native
CMSSW releases, but does not apply for Intel MIC.
Prepare for ARMv8 64-bit architecture. ARMv8 is coming
to server/desktop market in 2014-2015 with Cortex-A57
and Cortex-A53.

Q & A
Kudos to GiulioE, VincenzoI, DaniloP, ShahzadM, ThomasS, et al. for ideas and solving problems

