

Status of CTF3

G.Geschonke CERN

CTF3 Collaboration Board Jan 2008 G.Geschonke

Collaborating institutes

Countries	Funding Agencies	Laboratory							
	CERN	CERN							
FINLAND		Helsinki Inst of Phys (HIP)							
	CEA	DAPNIA Saclay							
EDANCE		LAL							
FRANCE	CNRS/IN2P3	LAPP							
		LURE							
INDIA*	Indian DAE	RRCAT, Indore							
ITALY	INFN	LNF							
PAKISTAN	PAEC	NCP							
		Budker Inst (BINP)							
RUSSIA		IAP							
	Dubna	JINR							
	Ministry of Education &	CIEMAT							
SPAIN	Science (MEC)	UPC							
	Science (MEC)	IFIC							
SWEDEN	Swedish Research Council	Uppsala University							
SWEDEN	Wallenberg Foundation	TSL							
SWITZERLAND		Paul Scherrer Inst (PSI)							
TURKEY		Ankara Univ Group (2)							
UNITED KINGDOM	STFC	J.Adams Institute							
LISA		Northwestern Univ Illinois (NWU)							
USA	DOE	SLAC							
		JLA B							

18 members involving 24 Institutes

3 new institutes

* India and Pakistan have not signed the CTF3 MoU, but have an agreement with CERN

Discussions with : UK (Cockcroft Institute), EPFL, INFN Milan, Ukraine, Oslo

Past collaboration with RAL within PHIN

News

news from CERN: "White Paper" has been approved by Council

		2008	2009	2010	Total
	Present MTP	4180	3550	3500	11230
Matarial budgat	Additional LTP	4000	4000	4000	12000
(LCHE)	(White Paper)				
(KCIII)	12 GHz power test stand	1050	1350	100	2500
	Total resources	9230	8900	7600	25730
	Present MTP	8480/48.5	5355/30.6	5565/31.8	19400/110.9
	(175 kCHF/FTE)				
	Add. White Paper	1250/10	3250/26	3000/24	7500/60
Man-Power	(125 kCHF/FTE)				
(kCHF/FTE)	12 GHz test stand	375/3	250/2	125/1	750/6
	Total resources	10105/61.5	8855/58.6	8690/56.8	27650/176.9
	Present staff (APT)	6055/33	6145/33	5923/31	18123/97
	New staff position	4050/28.5	2710/25.6	2767/25.8	9527/79.9

News

12 GHz stand-alone power source approved

klystron being ordered Operating April 09 (at the earliest)

Independent 24/7 testing with fast turn around Variable pulse length High repetition rate Easier to operate

30 GHz programme nevertheless continues in 2008

CTF3 Collaboration Board Jan 2008 G.GeschonkeCTF3 collaboration meeting 2008 G.Geschonke Status

Operation 2007

commissioning of CR: a bumpy start with many problems, optics studies, finally good result.

challenging new instability discovered, possible explanation: Vertical mode in RF deflector Delay Loop not used

Operation for 30 GHz: at nights and weekends, finally share with commissioning in bigger blocks

Operation 2007

- teething problems with modifications to the controls system (improved during the year)
- vacuum leak in dog-leg, **→** chamber to be replaced in shut-down
- two vacuum leaks after injector in vacuum bellows cause: dark current from gun
- e-gun problem: two cathodes had to be exchanged unstable operation → consolidate gun
- RF power sources: three klystrons needed replacement
 several charging power supplies failed → new supplies lower beam energy

- 2 Oct: high dark current after cathode change
- 9 Oct: vacuum leak after solenoid exit (CL.0405)
- 15 Oct: restarting, almost 10 mA dark current, try to fix
- 23 Oct: restarting commissioning
- 20 Nov: new leak at same location
- 25 Nov: restart, temperature probe installed
- Conclusions: Vacuum activity and local temperature at the leak
 - NOT correlated to
 - beam pulsing or not
 - RF on or off
 - BUT are correlated to
 gun average current readings
- Dark current (cw) from gun responsible for leaks

Gun current variation

- We observed current variations caused by HV change
 - Small HV variations not obvious since acquisition is noisy
- Could trace them to the gun regulation:

for a high dark current

the gun changes from current to voltage regulation and lowers the HV to limit the current

- Could be fixed by increasing the threshold for switching
- But the problem reappeared ...

Instability (cont.)

The pattern is very repetitive

On the plot we see several consecutive shots

P.Skowronski

VERTICAL MODES IN THE RF DEFLECTORS (1/2)

D.Alesini INFN

Metallic rods have been inserted to split in frequency the deflecting mode with vertical polarity.

The dimensions and position of the rods have been choosed inorder to avoid the excitation of the vertical modes from the beam power spectrum line at 2.8855GHz and RF generator.

NEW RF DEFLECTORS

Ongoing work: Combiner Ring

new extraction kicker for Combiner Ring (lower impedance):

Stripline kicker made by Ciemat, pulser from CERN

will be installed during this shut-down

Large campaign to align Beam Position Monitors during this shut-down

all components ordered magnets : RRCAT, TSL, CERN vacuum components: AL chambers: RRCAT Special components: LNF, CERN Stainless steel chambers: CERN Beam diagnostics: CERN, LNF, LAPP

> CTF3 Collaboration Board Jan 2008 G.Geschonke

Work for next phase

Tail Clipper

change length of bunch train going into CLEX with fast transverse kickers – collimator/dump

Strip-line kickers from CIEMAT, pulser: collaboration CIEMAT-CERN

Collimator / dump (CERN): serves also as safety element to inhibit beam into CLEX

- New Project: The Tail Clippers (VI)
 - Preliminary 3D model (full assembly).

Preliminary mechanical design I

I. Movable vacuum chamber - Jaw

The jaw is fixed to the vacuum chamber. The whole ensemble moves during the operation (tailclipper and dump)

II. Support and mechanical tables

- 1. The upper table allows the movement ranges for the <u>tailclipper</u> operation with the required resolution and precision
 - The movement range is procured by a stepper motor that commands 4 screw jacks
 - One potentiometer serves to monitor the displacement and detect a hypothetical motor failure.
 - The maximum and minimum range of movements are limited by end switches and mechanical stops

2. The lower table guarantees the positioning of the tailclipper for <u>dump</u> operation

- The pneumatic system guarantees that the dump position can always be reached (Tailclipper's own weight)
 - The rapidity of the system can be regulated. A safe movement is possible within 3s (safety requirements: within 30s)
- The maximum and minimum range of movements are limited by end switches and mechanical stops

Ongoing work in CLEX (2007 and later)

CIEMAT magnet movers, PETS prototype,(+ series ????), PETS tank (series ???) UPC & IFIC : BPM development + electronics (series ???) CERN overall responsibility, optics, RF equipment, diagnostics, infrastructure, quadrupoles ???

CERN PETS and Accelerating structure

Pakistan: stainless steel vacuum components + ??? **Iran**: RF + Beam dynamics simulations

G.Geschonke

General and Planning

CTF3 Collaboration Board Jan Steffen Döbert, CTF3 collaboration meet2009&200G290Bonke

PETS tank (CIEMAT)

PETS tank, under mechanical design,

PETS test pieces successfully produced, full length bar ordered

Quad movers (CIEMAT)

Quad moving table, Prototype finished'

Currently under test at CERN

 $<5\,\mu\text{m}$ reproducibility confirmed horizontal excellent: rel. in one sense 2 μm back lash $\sim5\,\mu\text{m}$

2008 G.Geschonke

BPM-analog electronics (Barcelona)

Prototype tested successfully at CERN in December, final fine tuning under way before installation

CTF3 Collaboration Board Jan 2008 G.Geschonke

Tentative TBL-Schedule

	2008												2009
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dez	Jan
Task													
Diagnostic Beam line installation													
Module Design													
Construction of prototype PETS tank													
Prototype module installation													
Ptrotype module testing													
Series production													
Installation of more modules													
Commissioning													
Complete installation													
Commissioning													

CLEX Layout : CALIFES line

2- Construction of the probe beam gun

Finally, gun was brazed just before Christmas and no leak at all

BUT

F_r = 2996.025 MHz !!

Before brazing, f = 2997.9 MHz

Fortunately, we have two holes/cell Thickness of cavity wall ≈ 4 mm =>deformation with a screw to increase the frequency in every cell to keep well balanced electrical field.

Finally: fr = 2998.057 MHz for T = 20°C, H = 60 %, P = 1015 mbar Width at -3 dB = 452 kHz => QL = 6633 => β = 0.96 => S11 = 0.02 Field (perturbation method):

Half cell: $\Delta f = 780 \text{ KHz}$

Middle cell: Af=3780 KHz

Coupling cell: $\Delta f = 790$ KHz

LASER system installation

Laser beam transportation under roof (ground floor)

- Pipes installed on ~80m
- completions foreseen end of Jan. 08

Installation on optical table In laser room (1^{rst} floor)

- Measurements and beam optimization in progress end of 2007
- Specific Crystals IR→UV : order in progress
- Installation foreseen in Feb/March 2008

Installation on optical table near Photo-injector *(ground floor)*

- all components are in Saclay
- Installation foreseen in February 2008

Installation of the modulator in CLEX

- Delivery at CERN (week 47)
- Mechanical installation (week 48 and 49)
 - racks and tank installed and connected
 - water cooling and line voltage installed by CERN
 - installation of a spare TH2100C klystron S/N 094011 with solenoid and PPT lead shielding
 - Test of the transportation of the tank+klystron+lead shielding to the maintenance area OK
- Control system
 - local control tested and explained to CERN
 - remote control: discussion on the connection and structuring the data
- Calibration
 - setting and calibration of all the auxiliary Power Supplies (PS) with the PLC values
 - problem with ion pump PS: defect on the HV cable \rightarrow replaced by a CERN PS
- Tests
 - machine and person interlocks OK
 - Tests of the klystron in diode mode with loads on RF ports
 - High voltage up to 38kV / 2 Hz PFN voltage which corresponds to 250 kV 280 A on the klystron
 - inverse voltage < 3% : OK</p>
 - pulse length = 7.67 μ s at 75%: OK
 - flat top = 5.5 to 5.7 μ s: OK

S. Curt, JL. Jannin, J. Marques, G. Rossat, G. Yvon

CTF3 Collaboration Board Jan CTF3 Collabor2008 ND: CTF3 Collabor2008 ND: CTF3 Collabor2008

End of January 2008 (except the RF	: CALIFES will be almost complete gun, Laser system and RF system)
 Mechanical supports + Dump 3 LIL sections Dipole 	 → July 07 → October 07 → October 07
 Deflecting Cavity BPMs (6) + steerers (5/6) the last steerer will be installed on the RE of 	 → October 07 → November 07 → see Claire's talk for BPMs
 Quadrupoles Beam Charge Monitor VPMs (3) Start installation of DE System : N 	 → October 07 → November 07 → December 07 Modulator → December 07
 Start installation of Laser System 	: mechanical part \rightarrow Dec 07 \rightarrow see Franck's talk
 Final Alignment of the line RF Gun Laser System RF System 	 → February 08 → February 08 → see Raphael's talk → April 08 → June 08
 Start commissioning (w/o power Start commissioning (with power 	r phase shifter) → June/July 08 er phase shifter)→ October 08

CTF3 Meeting

CTF3 Collaboration Board Jan 2008 G.Geschonke

Structure test – Phase 2

Test program

		2008				2009				2010				2011			
Tests in the two-beam experimental area																	
	1Q	2Q	ğ	4 Q	10	2Q	ğ	4Q	1Q	2Q	ğ	4Q	1Q	2Q	ğ	4Q	
RF component procurement																	
PETS procurement (phase 1)																	
Acc. structure procurement (phase 2)																	
Start of installation		<	>														
Structure test																	
Phase 1																	
PETS w/o damping material																	
PETS with damping material																	
PETS with recirculation																	
Phase 2																	
Existing PETS + 1 accelerating structure																	
new PETS generation + 1 accelerating structure																	
accelerating structures with WFM prototypes																	
Module test																	
Phase 1																	
Accelerating structures with WFM																	
Phase 2																	
Quadrupole on the main beam																	

For April, LAPP electronics to be installed:

- TL2:6 analog + digital for BPIs.5 digital for 40mm BPMs (analog provided by CERN).2 digital for BPR & WCM.
- *TL2':* 4 digital for 40mm BPMs (analog provided by CERN).
- **TBL:** 2 digital for 40mm BPMs (analog provided by CERN).
- **TBTS:** 10 analog + digital for Uppsala 40mm BPMs.

Total of 16 analog modules and 29 digital front-end.

Operation in 2008

CTF3

SHUTDOW

Machine

G.Geschonke

CTF3 with

on Board Jan 2008

Beam in PETS (nights) and

DL & CR & CLEX (days)

CTF3 with beam in

Th

Fr

Sa

Su

CTF3 closed

with keys for

CTF3 under access

Operation all year,

one stop foreseen: Installation of tail clipper and collimator / dump in September

30 GHz production will continue in 2008

Photo Injector

smaller emittance, faster phase coding, no "satellite bunches"

CERN	RAL
Cs ₂ Te photo cathode 3% QE 40 hours life time pulse train: 1.5μ s, charge per bunch: 2.33 nC bunch spacing 0.67 ns number of bunches: 2332	diode pumped Nd:YLF laser 10 μ J IR / bunch 0.37 μ J UV on cathode /bunch

Present status: RF gun under construction, Laser at CERN, needs to be finished , power 50 % down, ripple strong involvement from CERN, INFN Frascati and Milan

Phase 1: off-line testing from 2008 test stand being built in CTF2

Phase 2: Gun in CTF3: ????? base-line optics has been prepared

Laser is needed also for CALIFES injector !

1- Construction of the PHIN gun

Where are we since the last collaboration meeting?

All pieces of the gun sent to CERN to be brazed

=> gun brazed in December, 19th

BUT: Big leaks in the cooling tubes

CERN brazing workshop hopes to fix the problem

Delivery date: ??

CTF3 Collaboration Board Jan 2008 G.Geschonke

Conclusion

Programme basically on schedule:

- Commissioning of Combiner Ring has started
- TL2 and TL2' will be completed in spring 2008
- CLEX : Califes and Two-Beam Test Stand will become operational in spring 2008
 - The first cell of TBL will be available in first half of 2008 The other 15 cells of TBL are still missing

Conclusions

Exciting year ahead for operation:

- Commission Combiner Ring,
- Full bunch combination with phase-coding, Delay Loop and Combiner Ring
- Commission TL2, TL2'
- Commission Two-Beam Test Stand incl. PETS tests
- Commission Califes
- Qualify TBL PETS

******** Consolidate some critical equipment ********

Very good perspectives to meet our goals in 2010

Highly motivated team, excellent collaboration between all partners