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Medium-modified jets in the eye of a theorist
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hadronization

hadronization

1) hard process 2) vacuum shower 3) medium-induced radiation 4) medium evolution 5) medium correlated with jet by interaction

• series of splittings a → bc with decreasing t

dPa =
∑

b,c
αs(t)
2π

Pa→bc(z)dtdz with t = lnQ2/ΛQCD and z = Ed/Ep

Pq→qg(z) = 4
3
1+z2

1−z
Pg→gg(z) = 3(1−z(1−z))2

z(1−z) Pg→qq(z) = NF
2 (z2 + (1 − z)2)

• add medium perturbations, terminate at a soft virtuality scale t0 or Q0 and hadronize

⇒ compute the fate of the hard parton forward in time to get the final hadron shower



Medium-modified jets in the eye of an experimentalist

• ’Where is my jet, what belongs to it and what doesn’t?’

→ triggered observables and background subtraction techniques

→ form ’modified over unmodified’ ratios

⇒ conclude from the observed jet backward in time what the hard process and the
modification might have been



Does this matter?

initial state

(E,Q,x,y,PID,...)

final state

(E_jet, ...)

• initial state assumed by the theorist can lead to final states which are not triggered
(and remain unobserved)

• experimental final state can come from initial states theory did not consider
(background fluctuations, ’fake jets’,. . . )

⇒ a correct comparison requires to compute for all initial states, taking the biases

by the experimental observation into account



It has mattered!

• predictions before experiments are done (and no experimental procedure is known):
∗ compute FF for quark jets with fixed E for constant path through medium
→ see significant medium modification
∗ measure FF for jets with fixed Ejet range averaged over all medium paths
→ see no significant medium modification over large kinematic range
⇒ claim death of radiative energy loss paradigm at QM Annecy

• toy model based interpretations of experimental findings
∗ IAA in h-h correlations ≈ RAA at RHIC
→ popular explanation: tangential emission, same path on near and away side
∗ IAA at LHC > RAA

→ so triggered dihadrons originate preferably from close to away side??
⇒ puzzling. . .

• in both cases, biases are essential to understand the findings



Biases in a nutshell

T

S

T,S

all possible initial parameters

initial parameters with a chance to fulfill T

• triggered observation of observable S ↔ subset of all initial states A evolved which
→ have property S and fulfill trigger T (conditional probability)

• if T is a small subset of all possible events, this subset is usually not typical
→ thus T ∩ S is different from S, it is biased (unless T and S are correlated)

• size(T)/size(A) is the normalized rate at which triggered events occur
→ related to disappearance observables such as RAA = size(T)med/size(T)vac

4 types of biases in the following



The kinematic bias

• same trigger condition in vacuum and medium 6= same initial kinematics
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→ counter-intuitively tends to increase IAA in medium, naive argument misses this

• also other complications, intrinsic kT points on average in trigger direction,. . .

The energy of a trigger object 6= parton energy. This relation changes in a medium.



The parton type bias

• same trigger condition in vacuum and medium 6= same parton types
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• most trigger conditions enhance the fraction of quark jets on the trigger side
→ if qg → qg is important, this may enhance away side gluon fraction

• gluon jets in medium get additional penalty due to 9/4 higher interaction strength
→ in-medium away side may be much more gluon-populated than naively expected

Quark showers are more likely to trigger. The probability is changed by the medium.



The geometry bias

• if medium modification on average increases with medium length and density
→same trigger condition in vacuum and medium 6= same geometry probed

• partons with short in-medium paths have higher chance of fulfilling trigger condition
→ vertex distribution of triggered events is biased in a characteristic way

Triggered objects in medium do not represent typical geometry.



The shower bias

• a trigger condition biases the shower in which the trigger is created
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• suppresses medium-modifications — highly modified showers don’t trigger
→ explains CMS ’mystery’ of unmodified fragmentation function



Disclaimer

The following studies

• do not involve fit of any free parameter to data, or explore hydro systematics
→ should be seen as qualitative illustrations of effects

• are done using my MC code YaJEM-DE
→ but are not model-specific, qualitatively the same happens in any model in which

- in-medium jets in general soften
- in-medium jets in general broaden
- gluon jets are on average softer and broader than quark jets
- medium modifications grow with density and pathlength

• do not involve anything really novel
→ but connect dots between known effects systematically



A comparison of IAA

Case study I: compare away side IAA for different trigger objects

- the away side has no shower bias, because trigger is not from away side shower

- γ-h, h-h, jet-h (anti-kT with R = 0.4, PT > 2 GeV, STAR PID cuts), i(deal)jet-h
(anti-kT R = 0.4)

- trigger momentum range 12-15 GeV

- study away side charged hadron IAA

- RHIC kinematics (steeply falling parton spectra, energetic partons strongly penalized)

- LHC kinematics (energetic partons accessible)

- not quantitative predictions, no attempt made to adjust model to data



A comparison of IAA

RHIC:

• completely different surface bias
→ unbiased for γ-h, nearly unbiased for ijet-h, highly biased for h-h
→ note that bias depends on jet definition!

LHC:

• harder spectrum unbiases geometry



A comparison of IAA

• distribution of away side parton pT (≈ scale of back-to-back event)
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• different trigger objects imply rather different kinematics for same trigger PT

• also different response to medium
→ misleading to compare IAA for same trigger kinematics
→ only for same parton type and kinematics a comparison becomes useful



A comparison of IAA

RHIC

trigger fvac
glue near fvac

glue away fmed
glue near fmed

glue away

γ-h N/A 0.03 N/A 0.03
h-h 0.04 0.69 0.04 0.69
jet-h 0.12 0.68 0.08 0.69
ijet-h 0.44 0.55 0.33 0.61

LHC

trigger fvac
glue near fvac

glue away fmed
glue near fmed

glue away

γ-h N/A 0.04 N/A 0.04
h-h 0.33 0.79 0.32 0.78
jet-h 0.47 0.79 0.38 0.80
ijet-h 0.77 0.78 0.69 0.78

• moderately different parton type distribution, especially on near side
→ γ-h is really quite different in having quarks on the away side
→ also needs to be considered before comparison



A comparison of IAA
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• at RHIC, results fairly similar — mere coincidence, completely different physics!

• at LHC, better separation, kinematic bias is seen to be very important
→ pushed IAA strongly up for h-h

• if one can resist simplistic interpretation, there is lots of variation in
- geometry
- parton type
- kinematics

that is probed here



An observation

By changing e.g. the jet definition for the trigger, one can vary
- geometry probed in the reaction
- kinematics accessed
- involed pQCD subchannel and parton type

One can move the trigger momentum such that mean kinematics is the same
⇒ get to selectively vary geometry and parton type

The main kinematic and parton type bias structure is given by vacuum QCD
⇒ this doesn’t even have a large model dependence

If I were an experimentalist, I would use biases to my advantage to
design measurements to specifically scan through geometry or parton
type variations. This looks terribly useful to me, much more useful
than measurements with a small bias, because they never probe specific
situations.

(But I’m a theorist of course. . . )



Long. momentum distribution of jet particles

Case study II: the longitudinal distribution of hadrons in a 100-110 GeV range
(this is what CMS refers to as ’fragmentation function’)

- not real FF because in FF z = Ehad/Epart whereas here z = Ehad/Ejet with
Ejet < Epart

- ’trigger’ analysis by finding Ejet = 100 − 110 GeV clustered with ant-kT R = 0.3,
PT > 1 Ge, no PID cut
(the requirement that you found a jet is equivalent to a trigger condition)

→ trigger is from the same shower which is later analyzed — shower bias!

- LHC kinematics - 2.76 ATeV 0-10% central PbPb collisions or p-p collisions

- not significantly geometry-biased



Long. momentum distribution of jet particles
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• probes wide range of parton energies despite narrow trigger energy range

• significant number of showers carry 2/3 of energy inside R = 0.3
→ shower bias important

• fvac
glue = 0.44, fmed

glue = 0.36 — moderate gluon filtering



Long. momentum distribution of jet particles
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• without shower bias: strong depletion at high z, enhancement below 3 GeV
(taking real kinematics, geometry and parton type bias into account)

• with shower bias, completely different picture:
- enhancement below 3 GeV
- depletion between 3 and 20 GeV
- compatible with unmodified above 20 GeV

• shower bias reduced depletion, fmed
glue at high z dies out, IAA grows

→ essentially compensates depletion due to medium modification
⇒ the ’mystery’ has an easy solution



Dihadron triggered correlations

Case study III: away side IAA in dihadron triggered correlations

- coincidence of 12 GeV < T1 < 15 GeV on the near side and T2 on the away side
→ shower bias!

- analysis on hadrons after triggers have been removed

- RHIC kinematics — strong geometry bias expected

- hard coincidences are rare events, statistics is pretty lousy, events are highly biased



Dihadron triggered correlations

• as the range of T2 increases, tangential bias develops
→ partons from the medium center are disfavoured

• using variations of jet definitions, almost any region can be selectively probed
→ design measurement to be sensitive to certain regions

• this gets blurred for harder parton spectrum
→ a genuine strength of RHIC measurements



Dihadron triggered correlations
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• increasing T2 corresponds to a significant shift in parton kinematics

trigger fvac
glue near fvac

glue away fmed
glue near fmed

glue away

h-h 0.04 0.69 0.04 0.69
T2 = 4-8 GeV 0.071 0.49 0.07 0.38
T2 = 8-10 GeV 0.10 0.29 0.05 0.20

• increasing T2 kills away side gluon jet contribution



Dihadron triggered correlations
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• IAA looks completely unfamiliar and shows now enhancement
→ highly unusual events, completely different kinematics and parton types

• also shower bias is active (but smoothed over)



Summary

Biases are

• very generic
- whenever model broadens and softens in-medium showers
- whenever quark and gluon interactions strength is different
- whenever modifiaction increases with medium length and density

• almost everywhere — any triggered measurement is biased

• correlated with RAA — the smaller RAA, the stronger medium-induced biases
- RAA: measure of size of observed (’triggered’) event class med/vac
- bias ∼ size of all events over triggered event class

• extremely useful
- think designing a measurements to specifically vary just one parameter



Summary

Sun Tzu says:

”It is said that if you know your enemies and know yourself,

you will not be imperiled in a hundred battles; if you do not

know your enemies but do know yourself, you will win one and

lose one; if you do not know your enemies nor yourself, you

will be imperiled in every single battle.”

I say:

”If you understand parton medium interaction and the involved

biases, everything will become clear. If you understand parton-

medium interaction but not the biases, some observables will

make sense, others will appear as puzzles; but if you have

neither an understanding of biases nor a good model of parton-

medium interaction, you can not know the implication of any

hard probe.”


