BIASED SHOWERS

a framework to compare high P_T observables

Thorsten Renk

Introduction

Case study I: away side I_{AA} for various triggers

CASE STUDY II: THE CMS UNMODIFIED FF MYSTERY EXPLAINED

Case study III: 2+1 triggered correlations

CONCLUSIONS

Based on T. Renk, 1212.0646 [hep-ph].

Medium-modified jets in the eye of a theorist

- 1) hard process 2) vacuum shower 3) medium-induced radiation 4) medium evolution 5) medium correlated with jet by interaction
- ullet series of splittings $a \to bc$ with decreasing t

$$dP_a = \sum_{b,c} \frac{\alpha_s(t)}{2\pi} P_{a \to bc}(z) dt dz \quad \text{with} \quad t = \ln Q^2 / \Lambda_{QCD} \quad \text{and} \quad z = E_d / E_p$$

$$P_{q \to qg}(z) = \frac{4}{3} \frac{1+z^2}{1-z} \quad P_{g \to gg}(z) = 3 \frac{(1-z(1-z))^2}{z(1-z)} \quad P_{g \to q\overline{q}}(z) = \frac{N_F}{2} (z^2 + (1-z)^2)$$

- ullet add medium perturbations, terminate at a soft virtuality scale t_0 or Q_0 and hadronize
- ⇒ compute the fate of the hard parton *forward* in time to get the final hadron shower

Medium-modified jets in the eye of an experimentalist

- 'Where is my jet, what belongs to it and what doesn't?'
- ightarrow triggered observables and background subtraction techniques
- → form 'modified over unmodified' ratios
- \Rightarrow conclude from the observed jet *backward* in time what the hard process and the modification might have been

DOES THIS MATTER?

- initial state assumed by the theorist can lead to final states which are not triggered (and remain unobserved)
- experimental final state can come from initial states theory did not consider (background fluctuations, 'fake jets',...)
- \Rightarrow a correct comparison requires to compute for *all* initial states, taking the *biases* by the experimental observation into account

IT HAS MATTERED!

- predictions before experiments are done (and no experimental procedure is known):
- * compute FF for quark jets with fixed E for constant path through medium
- → see significant medium modification
- * measure FF for jets with fixed E_{jet} range averaged over all medium paths
- → see no significant medium modification over large kinematic range
- ⇒ claim death of radiative energy loss paradigm at QM Annecy
- toy model based interpretations of experimental findings
- * I_{AA} in h-h correlations $\approx R_{AA}$ at RHIC
- → popular explanation: tangential emission, same path on near and away side
- * I_{AA} at LHC $> R_{AA}$
- → so triggered dihadrons originate preferably from close to away side??
- \Rightarrow puzzling. . .
- in both cases, biases are essential to understand the findings

BIASES IN A NUTSHELL

- ullet triggered observation of observable $S \leftrightarrow \mathrm{subset}$ of all initial states A evolved which
- \rightarrow have property S and fulfill trigger T (conditional probability)
- if T is a small subset of all possible events, this subset is usually not typical
- \rightarrow thus $T \cap S$ is different from S, it is *biased* (unless T and S are correlated)
- size(T)/size(A) is the normalized rate at which triggered events occur
- \rightarrow related to disappearance observables such as $R_{AA} = \text{size}(\mathsf{T})_{med}/\text{size}(\mathsf{T})_{vac}$

4 types of biases in the following

THE KINEMATIC BIAS

ullet same trigger condition in vacuum and medium \neq same initial kinematics

- \rightarrow counter-intuitively tends to increase I_{AA} in medium, naive argument misses this
- ullet also other complications, intrinsic k_T points on average in trigger direction,. . .

The energy of a trigger object \neq parton energy. This relation changes in a medium.

THE PARTON TYPE BIAS

ullet same trigger condition in vacuum and medium \neq same parton types

vacuum

- ullet most trigger conditions enhance the fraction of quark jets on the trigger side o if qg o qg is important, this may enhance away side gluon fraction
- gluon jets in medium get additional penalty due to 9/4 higher interaction strength \rightarrow in-medium away side may be much more gluon-populated than naively expected

Quark showers are more likely to trigger. The probability is changed by the medium.

THE GEOMETRY BIAS

• if medium modification on average increases with medium length and density \rightarrow same trigger condition in vacuum and medium \neq same geometry probed

- partons with short in-medium paths have higher chance of fulfilling trigger condition
- ightarrow vertex distribution of triggered events is biased in a characteristic way

Triggered objects in medium do not represent typical geometry.

THE SHOWER BIAS

• a trigger condition biases the shower in which the trigger is created

- suppresses medium-modifications highly modified showers don't trigger
- → explains CMS 'mystery' of unmodified fragmentation function

DISCLAIMER

The following studies

- do not involve fit of any free parameter to data, or explore hydro systematics
- → should be seen as qualitative illustrations of effects
- are done using my MC code YaJEM-DE
- → but are not model-specific, qualitatively the same happens in any model in which
 - in-medium jets in general soften
 - in-medium jets in general broaden
 - gluon jets are on average softer and broader than quark jets
 - medium modifications grow with density and pathlength
- do not involve anything really novel
- → but connect dots between known effects systematically

Case study I: compare away side I_{AA} for different trigger objects

- the away side has no shower bias, because trigger is not from away side shower
- γ -h, h-h, jet-h (anti- k_T with R=0.4, $P_T>2$ GeV, STAR PID cuts), i(deal)jet-h (anti- k_T R=0.4)
- trigger momentum range 12-15 GeV
- study away side charged hadron I_{AA}
- RHIC kinematics (steeply falling parton spectra, energetic partons strongly penalized)
- LHC kinematics (energetic partons accessible)
- not quantitative predictions, no attempt made to adjust model to data

- completely different surface bias
- \rightarrow unbiased for γ -h, nearly unbiased for ijet-h, highly biased for h-h
- → note that bias depends on jet definition!

• harder spectrum unbiases geometry

• distribution of away side parton p_T (\approx scale of back-to-back event)

- ullet different trigger objects imply rather different kinematics for same trigger P_T
- also different response to medium
- \rightarrow misleading to compare I_{AA} for same trigger kinematics
- → only for same parton type and kinematics a comparison becomes useful

RHIC

trigger	f_{glue}^{vac} near	f_{glue}^{vac} away	f_{glue}^{med} near	f_{glue}^{med} away
γ -h	N/A	0.03	N/A	0.03
h-h	0.04	0.69	0.04	0.69
jet-h	0.12	0.68	80.0	0.69
ijet-h	0.44	0.55	0.33	0.61

LHC

trigger	f_{glue}^{vac} near	f^{vac}_{glue} away	f_{glue}^{med} near	f_{glue}^{med} away
γ -h	N/A	0.04	N/A	0.04
h-h	0.33	0.79	0.32	0.78
jet-h	0.47	0.79	0.38	0.80
ijet-h	0.77	0.78	0.69	0.78

- moderately different parton type distribution, especially on near side
- $\rightarrow \gamma$ -h is really quite different in having quarks on the away side
- \rightarrow also needs to be considered before comparison

- at RHIC, results fairly similar mere coincidence, completely different physics!
- ullet at LHC, better separation, kinematic bias is seen to be very important ullet pushed I_{AA} strongly up for h-h
- if one can resist simplistic interpretation, there is lots of variation in
 - geometry
 - parton type
 - kinematics

that is probed here

AN OBSERVATION

By changing e.g. the jet definition for the trigger, one can vary

- geometry probed in the reaction
- kinematics accessed
- involed pQCD subchannel and parton type

One can move the trigger momentum such that mean kinematics is the same \Rightarrow get to selectively vary geometry and parton type

The main kinematic and parton type bias structure is given by vacuum QCD \Rightarrow this doesn't even have a large model dependence

If I were an experimentalist, I would use biases to my advantage to design measurements to specifically scan through geometry or parton type variations. This looks terribly useful to me, much more useful than measurements with a small bias, because they never probe specific situations.

(But I'm a theorist of course. . .)

LONG. MOMENTUM DISTRIBUTION OF JET PARTICLES

Case study II: the longitudinal distribution of hadrons in a 100-110 GeV range (this is what CMS refers to as 'fragmentation function')

- not real FF because in FF $z=E_{had}/E_{part}$ whereas here $z=E_{had}/E_{jet}$ with $E_{jet} < E_{part}$
- 'trigger' analysis by finding $E_{jet}=100-110$ GeV clustered with ant- k_T R=0.3, $P_T>1$ Ge, no PID cut (the requirement that you found a jet is equivalent to a trigger condition)
- → trigger is from the same shower which is later analyzed shower bias!
- LHC kinematics 2.76 ATeV 0-10% central PbPb collisions or p-p collisions
- not significantly geometry-biased

Long. Momentum distribution of jet particles

- probes wide range of parton energies despite narrow trigger energy range
- ullet significant number of showers carry 2/3 of energy inside R=0.3
- → shower bias important
- $f_{qlue}^{vac}=0.44$, $f_{qlue}^{med}=0.36$ moderate gluon filtering

Long. Momentum distribution of jet particles

- \bullet without shower bias: strong depletion at high z, enhancement below 3 GeV (taking real kinematics, geometry and parton type bias into account)
- with shower bias, completely different picture:
 - enhancement below 3 GeV
 - depletion between 3 and 20 GeV
 - compatible with unmodified above 20 GeV
- ullet shower bias reduced depletion, f_{alue}^{med} at high z dies out, I_{AA} grows
- → essentially compensates depletion due to medium modification
- ⇒ the 'mystery' has an easy solution

Case study III: away side I_{AA} in dihadron triggered correlations

- coincidence of 12 GeV < T1 < 15 GeV on the near side and T2 on the away side
- \rightarrow shower bias!
- analysis on hadrons after triggers have been removed
- RHIC kinematics strong geometry bias expected
- hard coincidences are rare events, statistics is pretty lousy, events are highly biased

- as the range of T2 increases, tangential bias develops
- → partons from the medium center are disfavoured
- using variations of jet definitions, almost any region can be selectively probed
- ightarrow design measurement to be sensitive to certain regions
- this gets blurred for harder parton spectrum
- \rightarrow a genuine strength of RHIC measurements

• increasing T2 corresponds to a significant shift in parton kinematics

trigger	f^{vac}_{glue} near	f^{vac}_{glue} away	f_{glue}^{med} near	f_{glue}^{med} away
h-h	0.04	0.69	0.04	0.69
T2 = 4-8 GeV	0.071	0.49	0.07	0.38
T2 = 8-10 GeV	0.10	0.29	0.05	0.20

• increasing T2 kills away side gluon jet contribution

- \bullet I_{AA} looks completely unfamiliar and shows now enhancement
- ightarrow highly unusual events, completely different kinematics and parton types
- also shower bias is active (but smoothed over)

SUMMARY

Biases are

- very generic
 - whenever model broadens and softens in-medium showers
 - whenever quark and gluon interactions strength is different
 - whenever modifiaction increases with medium length and density
- almost everywhere any triggered measurement is biased
- \bullet correlated with R_{AA} the smaller R_{AA} , the stronger medium-induced biases
 - R_{AA} : measure of size of observed ('triggered') event class med/vac
 - bias \sim size of all events over triggered event class
- extremely useful
 - think designing a measurements to specifically vary just one parameter

SUMMARY

Sun Tzu says:

"It is said that if you know your enemies and know yourself, you will not be imperiled in a hundred battles; if you do not know your enemies but do know yourself, you will win one and lose one; if you do not know your enemies nor yourself, you will be imperiled in every single battle."

I say:

"If you understand parton medium interaction and the involved biases, everything will become clear. If you understand parton-medium interaction but not the biases, some observables will make sense, others will appear as puzzles; but if you have neither an understanding of biases nor a good model of parton-medium interaction, you can not know the implication of any hard probe."