IS2013

International Conference on the Initial Stages in High-Energy Nuclear Collisions

8-14 September, Illa da Toxa (Galicia-Spain)

Abstract submission is open - send your abstracts before the deadline July 7th 2013

http://igfae.usc.es/is2013/

jets and nPDFs

José Guilherme Milhano

Universidade de Santiago de Compostela & CERN PH-TH guilherme.milhano@cern.ch

discussions with and various material from: Néstor Armesto, Doğa Gülham, Yen-Jie Lee, Gavin Salam, Carlos Salgado, Urs Wiedemann, Korinna Zapp

R_{pPb} [charged hadrons]

— consistent with 1 at high-p_t for MB

NO quenching

need centrality dependence for definite answer

R_{pPb} [charged hadrons]

- consistent with 1 at high-p_t for MB
- NO quenching
- need centrality dependence for definite answer

how to measure centrality in pA collisions?

centrality dependence of R_{dAu} [π^0 and jets]

quenching ?

something MUST not be quite right here

centrality dependence of R_{dAu} [π^0 and jets]

quenching ?

something MUST not be quite right here

how to measure centrality in pA collisions?

dijet asymmetry

- ono [<2%] enhanced asymmetry [also, as in PbPb, no disturbance of azimuthal distribution] for all 'centrality' classes :: NO quenching
- HOWEVER, asymmetry rather insensitive to small losses
 - compare with 15% effect for most central PbPb

where [else] to look?

- —o jet R_{[p/A]A} very sensitive to small losses
 - in fact, totally insensitive to energy loss distribution
 - R_{AA} = jets in bin all losses + 'feed down' = unmodified jets
 - \hookrightarrow R_{AA} < 1 even for rather non-central collisions

where [else] to look?

- —o jet R_{[p/A]A} very sensitive to small losses
 - in fact, totally insensitive to energy loss distribution
 - R_{AA} = jets in bin all losses + 'feed down' = unmodified jets
 - \hookrightarrow R_{AA} < 1 even for rather non-central collisions

final state effects [quenching] sufficiently small for reliably use of jet observables to test/constrain initial state [nPDFs]

excellent news

excellent EPS09NLO
 description of dijet pseudo rapidity distribution for MB
 data

data sufficient to distinguish between parametrizations [EPS vs DSSZ]

further nPDF tests [with MB data]

- RHIC and LHC probe different regions of nuclear modification

- migration of maximum beyond reach follows from [as in DGLAP evolution] nuclear modification of the longitudinal parton momentum distribution
- other approaches [CGC, final state rescattering] involve transverse dynamics
 - result in mild shift:: test collinear factorization

rapidity scan

- measurements in different rapidity windows probe different x regions
 - displacement of transitions a definite [and qualitative] test of collinear factorization

DGLAP [EPS09] vs CGC [rcBK]

DGLAP [EPS09] vs CGC [rcBK]

nPDF vs nPDF

- if collinear factorizability survives pA data
 - --- rapidity scan can distinguish between parametrizations

quenching in small media

- if there is flow [free path length << L], a medium is formed
 - the presence of a medium leads to colour decorrelation effects which result in modifications of hadronic outcome which subsist for large pt
 - single colour exchange with medium sufficient to 'quench' hard partons [breakup of colour flow]
- if there is a medium, 'jet quenching' effects should be seen
- final state dynamics precludes direct use of pA data for nPDF extraction when quenching present

- colour of all jet components rotated by interaction with medium
 - colour correlations modified with respect to vacuum case
 - theoretically controllable within a standard framework [opacity expansion]

- colour of all jet components rotated by interaction with medium
 - colour correlations modified with respect to vacuum case
 - theoretically controllable within a standard framework [opacity expansion]

no medium interaction after radiation

- colour properties of hadronizing system vacuum-like
- radiated gluon belongs to system

- colour of all jet components rotated by interaction with medium
 - colour correlations modified with respect to vacuum case
 - theoretically controllable within a standard framework [opacity expansion]

no medium interaction after radiation

- colour properties of hadronizing system vacuum-like
- radiated gluon belongs to system

medium interaction after radiation

- colour properties of hadronizing system modified
- radiated gluon LOST

—o colour correlations modified with respect to vacuum case

essential input for realistic hadronization schemes

generic [robust] effects:

- softnening of hadronic spectra
- lost hardness recovered as soft multiplicity
- at work even if radiative energy loss kinematically unviable
- single medium interaction sufficient
- survives branching after medium escape

fragmentation in vacuum NOT the same as using vacuum FFs = final state nuclear effects

EPS09sNLO

factorized dependence on nuclear thickness

very mild [as in tiny] dependence at scales relevant for CMS measurement [Q² = 10⁴ GeV², x>0.001]

dijet n distribution :: centrality dependence

- forward [4<|η|<5] activity E_T^{HF} as centrality proxy
- with increasing 'centrality'
 - very large shift of average
 - significant narrowing

dijet η distribution :: centrality dependence

- MB as reference [excellent EPS09NLO description]
 - very large 'centrality' dependence
 - EPS09s impact parameter dependence can account at most for a few %

dijet η distribution :: centrality dependence

- MB as reference [excellent EPS09NLO description]
 - very large 'centrality' dependence
 - EPS09s impact parameter dependence can account at most for a few %

what does E_THF select?

a possible physical bias

- dijet system with $p_{t,1} = 120 \text{ GeV}$
 - both jets with η≈0 :: Edijet ≈ 240 GeV
 - minimal constraint on available energy for UE
 - \hookrightarrow $\eta_{\text{dijet}} \approx -2$ [relative to CM] :: $E_{\text{dijet}} \approx 1 \text{ TeV}$
 - could constrain energy available for UE
- the other way round
 - → low forward activity :: minimal constraint on energy available for hard process
 - high forward activity :: limited energy for hard process
 - suppression of dijets with large $|\eta_{dijet}|$:: narrowing of distribution
 - → should also be present in pp...

a possible physical bias :: pp sketch

- pp@5 TeV with UE, PYTHIA8, anti-k_t R=0.4
 - small but clear narrowing [modest activity :: statistics]
 - correlation between activity and hard process

a possible physical bias :: pA sketch

- reliable MC with correlated hard process + UE
 - → HIJING/HADIEL śśśśśś
- increase in activity on nuclear fragmentation side [HF^{plus}] comes cheaply
 - REALLY should be related to centrality
- increase in activity on proton fragmentation side [HFminus] has a high price
 - only one nucleon available
 - high HF^{minus} activity implies reduction of energy available for hard process
 - ISR :: softening of PDF :: deplection of hard modes :: displacement of CM of hard process
 - from lowest to highest total activity, HF^{minus} grows by factor 2.5
 - extremely naively CM of hard process displaced by arccosh[2.5] ≈ 1.5
 from pA CM
 - \hookrightarrow suppression of large η dijets centered around $\eta \approx 1.1$

a possible physical bias :: gaussian game

- gaussian fit lowest activity distribution
- introduce distortion to mimic energy interplay of hp and UE [also gaussian]
- fit distortion to reproduce highest activity distribution

to discuss

- # can what I discussed by argued away?

 # if not, can the bias be removed from data

 :: increasing HF^{plus} at fixed HF^{minus}?
- # relation of increasing HF^{minus} to ISR is very interesting physics

to discuss

- # can what I discussed by argued away?

 # if not, can the bias be removed from data

 :: increasing HF^{plus} at fixed HF^{minus}?
- # relation of increasing HF^{minus} to ISR is very interesting physics

how to measure centrality in pA collisions?

IS2013

International Conference on the Initial Stages in High-Energy Nuclear Collisions

8-14 September, Illa da Toxa (Galicia-Spain)

Abstract submission is open - send your abstracts before the deadline July 7th 2013

http://igfae.usc.es/is2013/