

Dijet Measurements in pPb Collisions

Doğa Gülhan (MIT) On behalf of the CMS Collaboration Jet-HI Workshop, UPMC Paris – July 3rd 2013

Outline

INTRODUCTION

Use of dijet measurements

Final state interactions

Initial state effects

Centrality in pPb =

Tracker based variables

Forward energy deposit

RESULTS

- Dijet p_T ratios and azimuthal correlations
- Dijet pseudorapidity:

Compared to predicted effects in nPDF

As function of forward activity

CONCLUSION

FUTURE DIRECTIONS

Dijet production in HI collisions

PbPb collisions

PLB 712 (2012) 176

- Jet quenching observed as
 - Pronounced dijet p_T imbalance in central collisions
 - Decreasing dijet p_T
 ratio as we go to more central collisions (~10%)

Dijet production in HI collisions

PbPb collisions

- Jet quenching observed as
 - Pronounced dijet p_T imbalance in central collisions
 - Decreasing dijet p_T ratio as we go to more central collisions (~10%)

pPb collisions

- Baseline for PbPb collisions
 - Cold nuclear effects, nPDFs

Dijet production in HI collisions

PbPb collisions

- Jet quenching observed as
 - Pronounced dijet p_T imbalance in central collisions
 - Decreasing dijet p_T
 ratio as we go to more central collisions (~10%)

pPb collisions

Do we see an onset of this effect in pPb already?

Probing PDFs

Kinematic reach for CMS, pPb @ \sqrt{s} = 8.8 TeV (0.1 pb⁻¹)

Jets cover high Q² and 10⁻⁴<x<1.

C.A. Salgado, et. al. J.Phys. G39 (2012) 015010

With the dijet selection of the analysis:

 $p_{T,1} > 120 \text{ GeV/c}, p_{T,2} > 30 \text{ GeV/c},$

Centrality in pPb

Centrality in pPb

SEVERAL OPTIONS ARE TESTED

Tracker based variables (|η|<2.4)

 Number of pixel hits, Number of pixel tracks, or number of tracks...

Forward energy deposit

Hadronic forward calorimeter based variables (3<|η|<5.2)

ZDC based variables (|η|>8.5)

Tracker based variables

Introduce bias on number of jets and their fragmentation:

Event less likely to have 3 (or more) jets

additional $N_{ch} \sim 10$.

Variables based on forward energy deposit

- ZDC based variables
 - Doesn't have good enough resolution to go to very high multiplicity events
- Forward calorimeter based variables:

Final choice: E_T measured in $4<|\eta|<5.2$

Some other cases:

- − E_{T} measured in 4<η<5.2
- E_T measured in -5.2<η<-4

Variables based on forward energy deposit

Energy momentum conservation:

When a large deposit on one side is required the dijet pseudorapidity shifts towards the other direction.

Jet-HI 2013

Event Classes

N_{part} has a weak dependence on forward calorimeter energy in pPb.

Results

Data and MC sample

2013 pPb dataset analyzed

- High- p_T jet triggered Required a jet with $p_T > 100$ GeV
- pPb reversed direction after L = 18.48 nb⁻¹
- In this data set, Pb ion is going in the positive z direction
- Remaining 13 nb⁻¹ will be added to the final results.

Monte Carlo samples

- Embedded PYTHIA pp jet pairs into a HIJING pPb background
 - pp dijets boosted to η = -0.465 to account for native collision asymmetry
- Boosted PYTHIA pp jets as reference

Dijet p_T ratios

• No modification larger than 2% is observed in dijet p_T ratio up to $E_T^{HF[|\eta|>4]} > 40$ GeV (top 2.5%)

Dijet azimuthal correlations

Δφ distribution does not change with HF energy

Summary of p_T ratios and $\Delta \phi$

- With the current systematic uncertainty, no detectable change in $\langle p_{T,2}/p_{T,1} \rangle$ and $\Delta \phi$ width larger than 2% as a function of forward calorimeter energy,
- These results allow us to use jets for nPDF determination.

Dijet n

$$\eta_{dijet} = \frac{\eta_1 + \eta_2}{2}$$

- (0-100)% centrality bin is modified with respect to MC references
- A systematic shift in the positive η direction vs HF energy.

Dijet n

$$\eta_{dijet} = \frac{\eta_1 + \eta_2}{2}$$

- **(0-100)% centrality bin** is modified with respect to MC references
- A systematic shift in the positive η direction vs HF energy.

Dijet $n \leftarrow \rightarrow x$

François Arleo and Jean-Philippe Guillet http://lapth.cnrs.fr/npdfgenerator/

Comparison to nPDF predictions

• Observe similar enhancement/suppression in dijet η as predicted for parton x by EPS09 collaboration.

Comparison to nPDF predictions

- Agreement between data and EPS09 for dijet $\eta > -2$.
- The disagreement at $\eta > -2$ is probably due to difference in dijet selection.

Dijet n

$$\eta_{dijet} = \frac{\eta_1 + \eta_2}{2}$$

- (0-100)% centrality bin is modified with respect to MC references
- A systematic shift in the positive η direction vs HF energy.

Dijet n

$$\eta_{dijet} = \frac{\eta_1 + \eta_2}{2}$$

- (0-100)% centrality bin is modified with respect to MC references
- A systematic **shift in the positive η direction** vs HF energy.

Different choices of normalization

distribution does not change for dijet $\eta > 0$. (EMC region)

Summary of dijet n

- Mean of η_{dijet} increases v.s. forward calorimeter energy
- Width of η_{dijet} decreases v.s. forward calorimeter energy (also in MC reference)

Bias due EM conservation?

Why does the dijet pseudorapidity get narrower by increasing forward energy?

$$E_{JJ} = p_{T,1} \cosh(\eta_2) + p_{T,1} \cosh(\eta_2)$$

As forward energy in the event increases the energy that is left to dijet pair decreases.

This trend is smaller if you look at +z side. Why?

Variables based on forward energy deposit

Energy momentum conservation:

When a large deposit on one side is required the dijet pseudorapidity shifts towards the other direction.

Bias due EM conservation?

Does this also result in a shift?

$$E_{JJ} = p_{T,1} \cosh(\eta_2) + p_{T,1} \cosh(\eta_2)$$

Could be the case? How much of an effect?

Conclusions

- It is very difficult to distinguish collisions with different impact parameter/ N_{part} in pPb.
- No significant jet quenching in pPb collisions:
 - Any modification dijet p_T ratio and azimuthal angle correlation is < 2%.

PDF modifications

- Dijet pseudorapidity distribution is sensitive to nPDF for $x > 10^{-3}$ and $Q^2 > 5000$.
- Dijet pseudorapidity v.s. forward calorimeter energy show an interesting trend

Looking forward

nPDF measurements with dijets

- Inclusive centrality dijet pseudorapidity measurement proved to be useful to constraint nPDFs, so we can go further:
 - Q² dependence of nPDF
 - Going to lower x
 - Impact parameter dependence of nPDF:
 - Is there a way to isolate nPDF effects on dijet pseudorapidity as a function of forward activity?
 - Is there a way around complicated centrality biases?

Using different probes

- Quark-gluon nPDF:
 - Gamma-Jet measurements.
 - More elaborate quark-gluon jet discrimination
- Flavor dependence of nPDF's.
 - b-jets: With current 31 nb⁻¹ data O(1000) of di-b-jets

Back-up

Centrality and forward energy

EPOS comparison (v2)

What do we know about jet quenching in pPb collisions?

PRL 110 (2013) 082302

$$R_{pPb} = \frac{\sigma_{pp}^{inel}}{\langle N_{coll} \rangle} \frac{d^2 N_{pPb} / dp_T d\eta}{d^2 \sigma_{pp} / dp_T d\eta}$$

 $R_{pPb} \sim 1$ from ALICE collaboration

No strong modification of high p_T charged particle spectra in NSD 0-100% pPb collisions.

We need to look at high multiplicity events ("central collisions").

How do we classify the events?

