Ideas in data & MC comparisons

Yetkin Yilmaz

Modification of the inclusive jet spectra

CMS-PAS-HIN-12-004

Jet pT spectrum shifted and/or suppressed in PbPb

Interpreting R_{AA}

Results are unfolded for resolution effects – straightforward to compare with theory predictions.

"Surface-biased" measurement: More sensitive to the **less-quenched** jets (not saying *geometry* - yet)

Are the jets quenched often by similar amounts, or by a wide variety of values?

Dijet and Photon+Jet correlations can answer more questions

Dijet imbalance

Imbalance changing in both MC-reference and PbPb. Try to summarize the information with the **mean**.

p_T-dependence of the dijet imbalance

Reference itself has an increasing trend

The leading jet has also suffered energy-loss Modeling is needed to extract the exact p_T dependence

Putting the results together

Following slides present a simple modeling attempt in order to:

- illustrate a correct approach for comparison the data
- get a physical intuition, although not as precisely as from a realistic calculation

side loses further

of energy-loss

Good Data-MC comparison recipe

Jet resolution effects on imbalance

$$\sigma\left(\frac{p_{\mathrm{T}}^{\mathrm{Reco}}}{p_{\mathrm{T}}^{\mathrm{Gen}}}\right) = C \oplus \frac{S}{\sqrt{p_{\mathrm{T}}^{\mathrm{Gen}}}} \oplus \frac{N}{p_{\mathrm{T}}^{\mathrm{Gen}}},$$

The model calculation has to take into account the resolution effects when comparing with convoluted data

C	S	<i>N</i> (pp)	N (50–100%)	N (30–50%)	N (10–30%)	N (0–10%)
0.0246	1.213	0.001	0.001	3.88	5.10	5.23

Generator level leading and subleading jets matches reco level

Good Data-MC comparison recipe

Plot imbalance, fragmentation

Plot R_{AA}

Toy model

Simple Toy Model: Independent quenching

An artificial energy-loss is applied on particle-jets in Pythia generated events

Each jet suffers a random energy-loss, completely independent on other jets in the event

No difference between quark vs gluon jets

The probability distribution of energyloss is modulated by

- the tuned mean amount and
- momentum dependence

Simple model: Independent quenching

- Jet RAA suggests that about 20 GeV is lost on average
- This is not sufficient to cause imbalance as seen in data
- There should be a further anti-correlation between the two jets

Geometry-inspired toy-model

- The material along the trajectory of the jet is summed, weighted by a power of r
- r = distance between target nucleon and jet origin
- Static medium

Correlation between two jets

Material weighted by r⁰

0-20%

Model tunes Δp_{τ} ~10.0

∆p_{_}~20.0

∆p_{_}~40.0

_ ∆p_{_}~50.0

_ ∆p₊~70.0

∆p_{_}~60.0

Moving towards more imbalance compared to independent quenching

300

p_{T1} (GeV/c)

Blue is consistent with R_{AA} but Red is better with $\langle p_{T,1}/p_{T,2} \rangle$

Material weighted by r¹

Material weighted by r²

Model study

The trends observed in model with r-weighted material, with not much (perhaps logarithmic) p_T dependence, resulting in ~20 GeV/jet energy-loss, are consistent with data;

Any model, inducing similar correlations (a combination of geometry & radiation & parton-type effects) may be successful in description of data

Photon-Jet correlations

Conclusions

Inclusive jet R_{AA} and dijet imbalance provide complementary information on the energy-loss dynamics, which have been combined for the first time to isolate medium geometry-sensitive effects

The end

Next: back-up slides

Tuning Quenching Weights

Try a different functional form for the probability distribution

Not enough impact on results to account for the observed imbalance

p_T dependence of energy-loss

Mild p_T dependence, the first two parameterizations survive. Similar lesson from other geometry models.

Centrality dependence of smearing

Smearing important in pp and peripheral PbPb as much as in central PbPb!

Dijet measurements

At high p_T, only very few jets get completely lost on the away side

Correlating the jets may teach us about the shape & width of the quenching weights