Ideas for Future Measurements

Jet 1, pt: 70.0 GeV

Yen-Jie Lee (MIT/CERN) for the CMS Collaboration

Jet Workshop in HI Collisions
UPMC, Paris, France
12 July, 2013

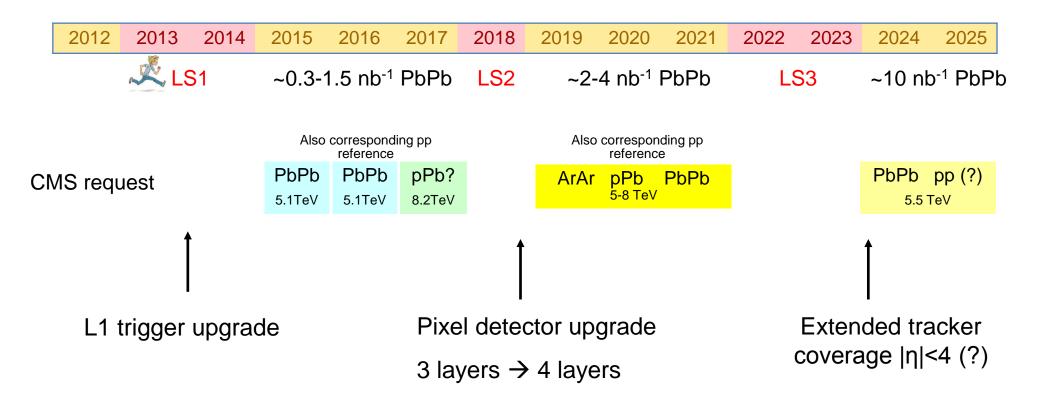
What we have learned so far

1. Jet $R_{AA(CP)}$: High p_T jet suppression $\rightarrow \Delta R = 0.2 - 0.5$ doesn't capture all

the radiated energy

2. Large average dijet and photon-jet p_T imbalance

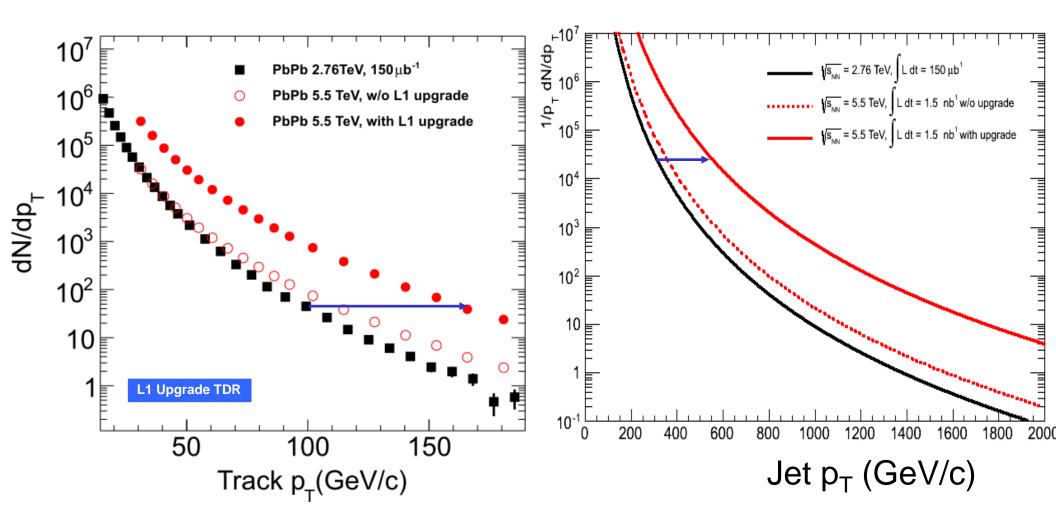
No jet quenching in pPb MB p_T ratio difference < 2% in the highest multiplicity pPb events


3. Angular correlation of jets not largely modified

4. p_T difference found at low p_T particles far away from the jets

5. Observation of modified FF and jet shape

6. Indication of b-jet quenching via b→J/ψ, b-jet tagging (and high p_T muon suppression)


7. Path length dependence of jet (very high p_T track) v₂

Kinematic reach

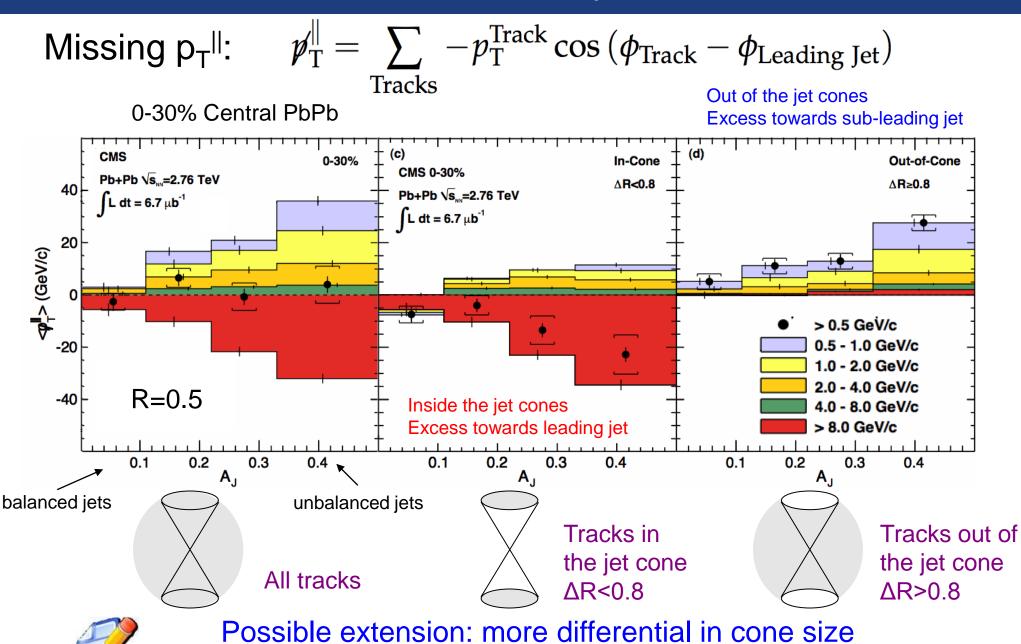
High p_T track

High p_T Jet (Anti- k_T R =0.3)

	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	
_	LS1			~0.3-	1.5 nb ⁻¹	PbPb	LS2	~2-4 nb ⁻¹ PbPb			LS	S3	~10 nb ⁻¹ PbPb		
				Also	correspond reference			Also corresponding pp reference							
CMS request			PbPb	PbPb	pPb?		ArAr		PbPb				pp (?)		
	_			5.1TeV	5.1TeV	8.2TeV			5-8 TeV				5.5 T	eV	
300 GeV	Jet F '/c	R_{AA}		Up	o to ~5	00 Ge'	V/c		~70	0 GeV/	'C	~	1 TeV	/c	
100 Track R _{AA} GeV/c				Up	o to ~1	60 Ge'	V/c	~220 GeV/c					~300 GeV/c		

	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	
LS1				~0.3-	1.5 nb ⁻¹	LS2	~2-4 nb ⁻¹ PbPb			L;	LS3		⁻¹ PbP		
				Also	correspond reference			Also corresponding pp reference							
CMS request			PbPb	PbPb	pPb?		ArAr					PbPb pp (?)			
	•		5.1TeV	5.1TeV	8.2TeV			5-8 TeV				5.5 T	eV		
300 Jet R _{AA}				U	o to ~5	00 Ge	V/c		~70		~1 TeV/c				
GeV	//c	AA		'											
100		Track R _{AA}		U	o to ~1	60 Ge	V/c		~22		~300 GeV/				
GeV		c Dijet (p _{T1} >120GeV/			0001	4 = 5 4									
50k	Dij				//c) ~300k-1.5M				~2N		~10M				
O(1	k) h i	et (p⊤>′	12000	//0)	41 ₄ 24	1 lz			20	l, EGL			1.	10k	
\sim (1	ורט עיי	U (PT>	IZUGE	V/C)	~4k-2	١ĸ			~∠0	k-56k			~ 4	40k	

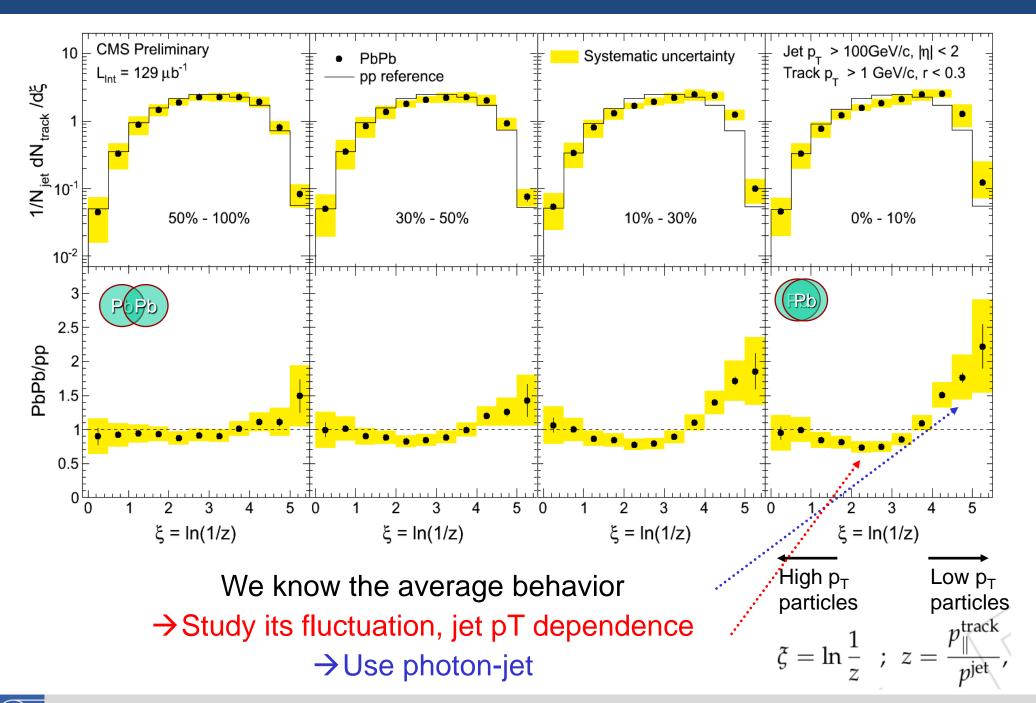
1															
	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	
	LS1				1.5 nb ⁻¹	PbPb	LS2	~2-4 nb ⁻¹ PbPb			1.9	S3	~10 nb ⁻¹ PbPb		
				Also	correspond reference			Also corresponding pp reference							
CMS request				PbPb PbPb pPb?				ArAr		PbPb			PbPb pp (?)		
				5.1TeV	5.1TeV	8.2TeV			5-8 TeV	5-8 TeV				TeV	
300 GeV	Jet F	R_{AA}		Uŗ	o to ~5	00 Ge	V/c	~700 GeV/c					~1 TeV/c		
100 GeV		k R _{AA}		Uŗ	o to ~1	60 Ge	V/c		~22	0 GeV/	С		~300 GeV/		
50k	Dije	et (p _{T1} >	-120G€	eV/c)	~300	k-1.5M		~2M-4M					~10M		
O(1I	<) b-je	et (p _T >'	120Ge\	V/c)	~4k-2	1k			~28	k-56k			~1	40k	
1.5k	(p _{Tv}	,>60 Ġ	hoton-j eV/c) GeV/c)	~	-9k-45 -300-1				~60k ~2k-4	-120k 4k			~30 ~10		


	2012	2013	2014 S1		2016 .5 nb ⁻¹		2018 LS2		2020 4 nb ⁻¹		2022 LS	2023	2024 ~10 nb	2025 o ⁻¹ PbPb	
CM	1S req	uest		PbPb 5.1TeV	reference PbPb 5.1TeV	pPb? 8.2TeV		ArAr	correspon reference pPb 5-8 TeV	Э			PbPb 5.5 T		
300 GeV/	Jet c	R_{AA}		Up	to ~5	00 Ge'	V/c		~700		~1 TeV/c				
100 GeV/		ck R _{AA}		Up	to ~1	60 Ge'	V/c		~220		~300 GeV/c				
50k								~2M-4M					~10M		
O(1k	k) b-je	et (p _T >´	120Ge\	//c)	~4k-2	1k		~28k-56k					~140k		
1.5k	(p _T ,	,>60 Ġ	hoton-j eV/c) GeV/c)	~	9k-45 300-1				~60k- ~2k-4		~300k ~10k				
~100) W	(pT>50	GeV/c)	~600-	3000		~4k-8k					~20k		
~10	~10 Z (p _T >50 GeV/c)					00		~400-800					~2k		
7-10	ttba	ar → llbb	MET	^	-90			~200					~600		

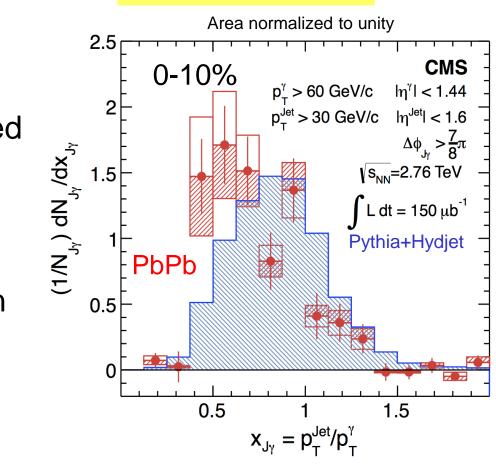
Possible future measurements

- (1) Extended analysis with dijet, photon-jet,
 Z(W)-jet
- (2) Flavor dependence of jet quenching
- (3) Path length dependence of jet energy loss
- (4) nPDF measurement & dijet η shift

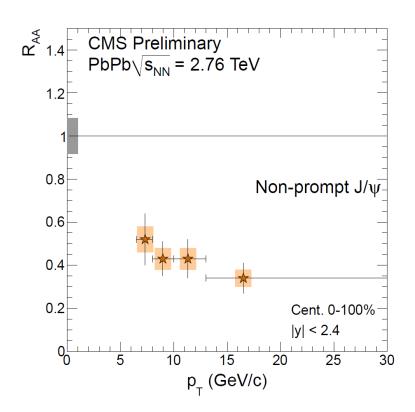
- (1) Extended analysis with dijet, photon-jet,
 Z(W)-jet
 - Turn on of the jet quenching in PbPb (pPb?)
 - Detailed map of the radiated energy
 - Missing p_T, associated yield
 - Jet shape and fragmentation function (moment)
 - Select on quenched jet


Missing-p_T||

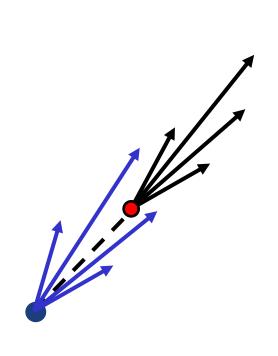
Possible extension: more differential in cone size Study photon(Z)-track missing p_T^{\parallel}

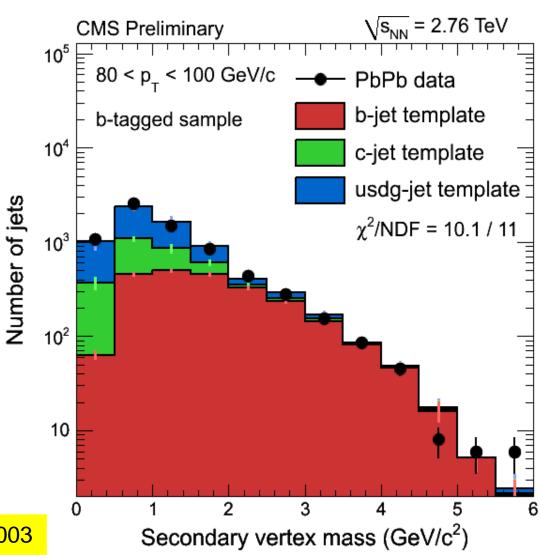

Jet fragmentation functions

Select on quenched jets

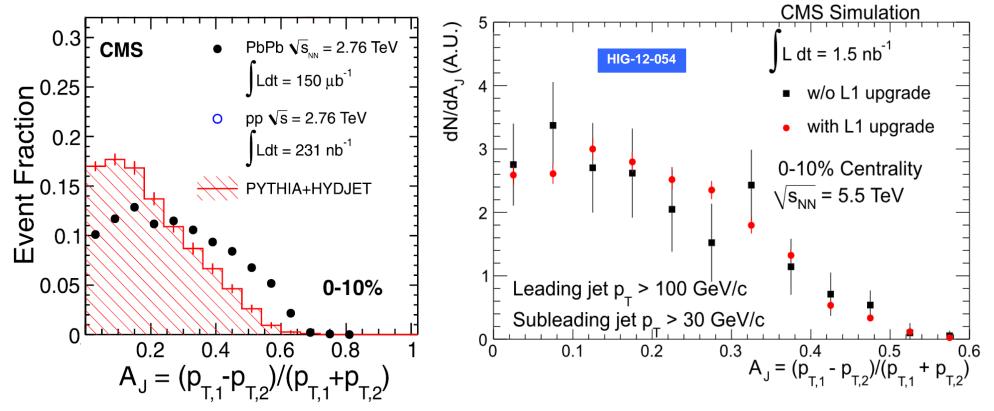

- X_{jγ} as a proxy
 - Selecting on jets originated from partons passing different in-medium path length
 - Jet shapes, fragmentation function (moment) v.s. X_{jγ}
- Can we "unfold" the $X_{j\gamma}$ distribution to get $P(\Delta E)$?

PLB 718 (2013) 773


(2) Flavor dependence

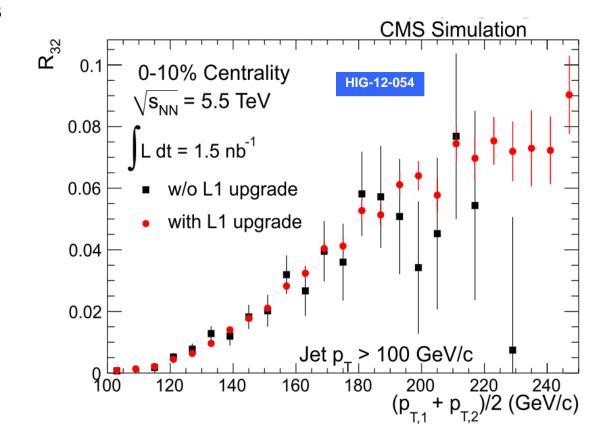

- Flavor dependent jet quenching
 - b-jet tagging (gluon-jet tagging?)
 - 3jet/2jet ratio
 - Non-prompt J/ψ
 - Open heavy flavor meson (D, B)

Tagging and counting b-quark jets

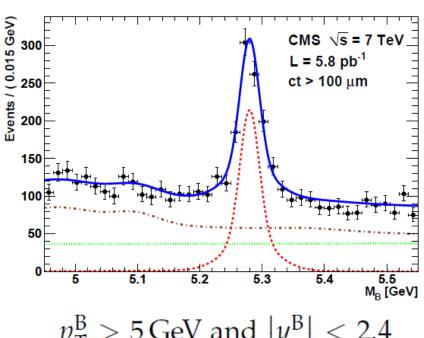

Secondary vertex tagged using flight distance significance

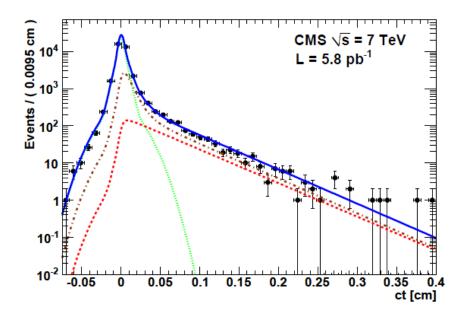
CMS PAS HIN-12-003

b-jet physics performance



- Goal: di-b-jet asymmetry as done for inclusive jets in HIN-10-004 and HIN-11-013
- Proposed observable:
 - Dijet asymmetry (A_J) & R_B (fraction of balanced di-b-jet)
- Expect similar systematics as light jets + (b tagging uncertainty & light jet contamination)
- Use 2011 kinematic cuts: $p_{T,1} > 100$ GeV/c and $p_{T,2} > 30$ GeV/c

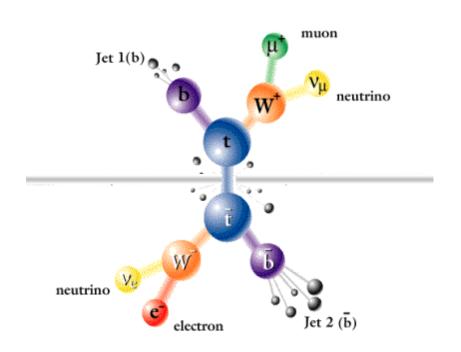

Physics performance of 3-jet events

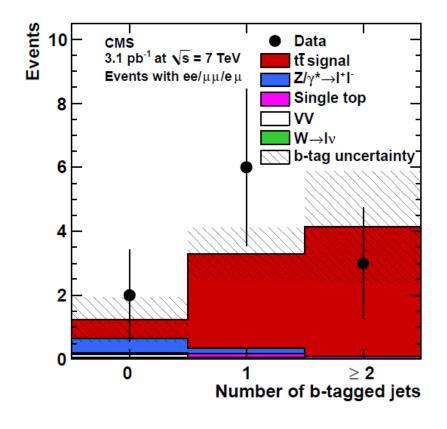

- Access to gluon jets: three jet events
 - R₃₂ may be modified due to jet quenching
- Similar study as QCD-10-012
 - All jet p_⊤ threshold > 100 GeV/c
- No existing experimental measurements in heavy ion collision
- Simulated with PYTHIA at 5.5 TeV

B and D meson

PP 7 TeV

$$p_{\rm T}^{\rm B} > 5\,{\rm GeV}$$
 and $|y^{\rm B}| < 2.4$

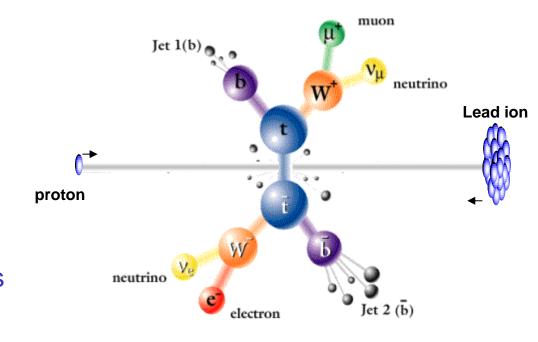

CMS is capable of reconstructing B+ \rightarrow J/ ψ K+, B⁰ \rightarrow J/ ψ Ks, Bs \rightarrow J/ ψ ϕ ...


Requires high p_T D*, B meson trigger

Top production in pp collisions

Decay channels:

- II+bb+MET 10%:
 "observation channel"
- I+bb+2jet+MET 44%
- bb+4jet 46%


Number of bjets with $p_T > 30 \text{ GeV/c}$

PLB 695 424-443,2011

ttbar production in pPb

Observation of ttbar production in heavy ion collisions.
 Cross-section measurement.

- Expected statistics
 - 30/nb → ~400 ttbar pair
 - 300/nb → ~4000 ttbar pair
- Eff*Acc of II+jet channel ~ 1.5-2.5%
 - 30/nb → ~10 II+jet candidates
 - 300/nb → ~100 II+jet candidates

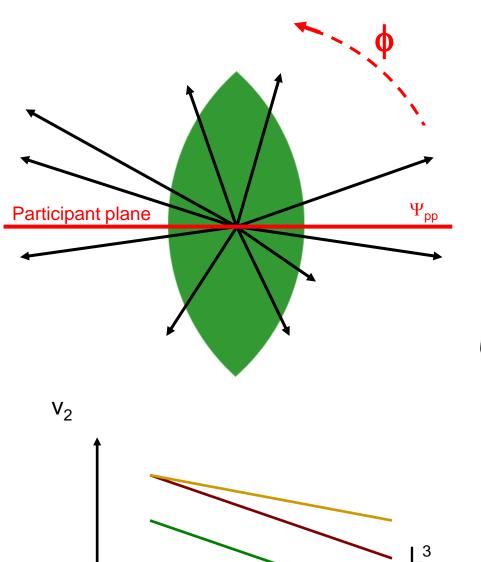
Top production in PbPb collisions

Assuming 1/nb at 5.5 TeV

Ttbar cross-section:

- ~ 3.5 µb
- →~3500 ttbar pairs per 1/nb
- →~50-90 II+jet per 1/nb
- Decay channels:
 - II+bb+MET 10%: "observation channel"
 - I+bb+2jet+MET 44%
 - bb+4jet 46%

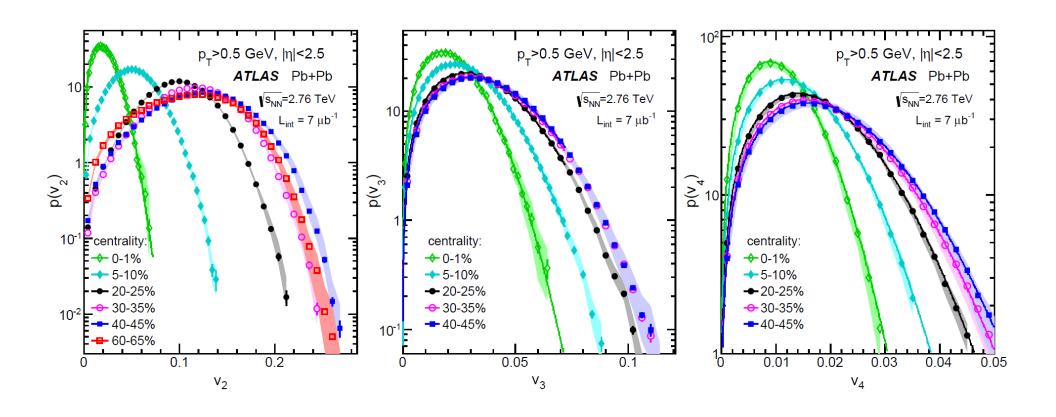
Coll. Coll.+ SAR SAR 16 $d\sigma_{PbPb}/dm_{jj} \ [nb/GeV]$ WAR \mathbf{B}^{*} ackground imes 5 70 75 80 85 50 55 60 65 70 75 80 85 90 m_{ii} [GeV] mii [GeV] Coll.+WAR Coll. Coll.+ SAR SAR 1σ_{РьРь}/dm_{bjj} [nb/GeV] 12 10 3 180 200 100 140 120 160 180 120 140 m_{bji} [GeV] m_{bjj} [GeV]


Arxiv 1210.0116

"modification of top mass" (M_{bjj})

- (3) Path length dependence
 - Jet observables v.s. centrality
 - Jet observables v.s. $\Delta \psi_{FP}$
 - Jet observables v.s. v_N
 - Biased selection (leading hadron / sub-jet selection)

Path length dependence of jet energy loss?


Overlap zone is almond-shaped

- → Parton energy loss is smaller along the short axis
- → More high-p_T tracks and jets closer to the event plane
- → Azimuthal asymmetry (v₂):

$$dN/d\phi \propto 1 + 2v_2\cos(2(\phi - \Psi_{EP}))$$

→ v2 is sensitive to the path-length dependence of the energy loss

Event shape engineering

(4) Dijet η shift

- What is the origin of the dijet η shift?
 - Study of dijet η v.s. jet p_T selection, dijet mass v.s. forward calorimeter energy
 - Study of photon-jet η v.s. forward calorimeter energy
 - W & Z boson v.s. forward calorimeter energy?

nPDF measurement

- nPDF measurements in pPb & PbPb:
 - Study of dijet η v.s. jet p_T selection, dijet mass
 - Vary the Q² and x we are probing
 - Inclusive isolated photon measurement
 - Sensitive to gluon PDF
 - 20-300 GeV
 - W and Z boson pseudorapidity
 - Study of jet production with large cone size (R=0.5,0.7)

Backup

