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OUTLINE

• Motivation: in-medium jet modification at the LHC

• Probabilistic picture for in-medium jet evolution: 

factorization of multiple-branchings:

  1 - Incoherent branchings:  Time scale separation, 

 resum.  large 

  2 - Coherent branchings:  resum. Double Logs 

     in a renormalization of the quenching parameter      

αsL

q̂

tbr � L
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Jets in HIC at the LHC

• JET QUENCHING : 

a tool to probe the Quark-
Gluon-Plasma  and QCD 
dynamics at high parton 
density 

• in-medium jet modification:  departures from p-p baseline 
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• Originally a hard parton (quark/gluon) which fragments into 
many partons with virtuality down to a non-perturbative 
scale where it hadronizes

• LPHD: Hadronization does not affect inclusive observables 
(jet shape, energy distribution etc..)

M⊥ ≡ E θjet Q0 ∼ ΛQCD

JETS IN VACUUM



θjet > θ1 > ... > θn

•  The differential branching probability 

αs → αs ln2 M⊥
Q0

-  soft and collinear singularities

dP � αsCR

π
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ω

d2k⊥
k2
⊥ ω, k⊥

E, p⊥

Hard Scat.

•  Multiple branchings are not independent and obeys Angular Ordering (for 
inclusive observables): Due to color coherence (interferences) large-angle gluon 
emissions are strongly suppressed.  AO ordering along the parton cascade :   

Q0 < k⊥ < M⊥

• Phase-space enhancement (Double Logs)

[Bassetto, Mueller, Ciafaloni, Marchesini, Dokshitzer, Khoze, Troyan, Fadin, Lipatov,  80’s]

JETS IN VACUUM 



TASSO Collaboration, Z. Phys. C 47 (1990) 187

OPAL Collaboration, Phys. Lett. B 247 (1990) 617

softhard

Fragmentation function

AO limits 
phase space 

for soft 
emissions!

D(x) ≡ x
dN

dx

x ≡ Eh/Ejet

JETS IN VACUUM



- What is the space-time 
structure of in-medium jets?

- probabilistic picture?        
         resummation scheme? 
         ordering variable?
       

IN-MEDIUM JET EVOLUTION



Baier, Dokshitzer, Mueller, Peigné, Schiff (1995-2000) Zakharov (1996) Arnold, Moore, Yaffe (2001) 

MEDIUM-INDUCED GLUON RADIATION

• Scatterings with the medium can induce gluon radiation

• The radiation mechanism is closely related to 

     transverse momentum broadening

2
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q
q2 C(q) � m2

D

λ
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mean free path

• where the quenching 
parameter

is related to the collision rate in a thermal bath 

C(q, t) = 4παs CR n(t) γ(q) ≡ γ(q) =
g2

q2(q2 + m2
D)

P. Aurenche, F. Gelis 
and H. Zaraket, (2002)
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= δabn(t)δ(t− t�)(2π)2δ(2)(q − q�) γ(q) ,

Independent scatterings: Gaussian distribution for the background field

where
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A−(q, t)

t ≡ x+
LC time



MEDIUM-INDUCED GLUON RADIATION

• How does it happen?    After a certain number of scatterings 
coherence between the parent quark and gluon fluctuation is 
broken and the gluon is formed (decoherence is faster for 
soft gluons) 

tf ≡ ω

�q2
⊥�

� ω

q̂ tf
➡ 

• The BDMPS spectrum ω
dN

dω
=

αsCR

π

�
2ωc

ω
∝ αs

L

tbr

with                         is the maximum frequency at which the medium acts 

fully coherently on the  (maximum suppression). Typically,  

ωc =
1
2
q̂ L2

• Soft gluon emissions ω � ωc

➡ Short branching times                      and  large phase-space: tbr � L

ωc � 50 GeV

αs
L

tbr
� 1When                    Multiple branchings are no longer negligible

tf = tbr ≡
�

ω

q̂



➡   Going beyond the eikonal (soft gluon) approximation  

➡   Fully differential in momentum space

➡   Factorization of multiple branchings in the 

decoherence regime 

BUILDING IN-MEDIUM JET EVOLUTION: 
Some necessary steps
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2

← tbr →

• The branching can occur anywhere along the medium with a constant 
rate 

• Time scale separation:  compared to the time scale of the jet 
evolution in the medium L the branching process is quasi-local 

• Off-spring gluons are independent after they are formed as they are 
separated over a distance that is larger then the in-medium 
correlation length 

tbr � L

DECOHERENCE OF MULTI-GLUON EMISSIONS 

0 Lt

[See F. Dominguez’s talk]
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incoherent emissions
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coherent emissions 
(suppressed!)

DECOHERENCE OF MULTI-GLUON EMISSIONS 

Y. M.-T, K. Tywoniuk, C. A. Salgado (2010-2012)
J. Casalderray-Solana, E. Iancu (2011)  

• For large media two subsequent
emissions are independent and 
therefore factorize 

• Interferences are 
suppressed by a factor                          

tbr/L� 1

Note that this is not the case in a 
vacuum shower where color coherence 

is responsible for Angular-Ordering



DECOHERENCE OF MULTI-GLUON EMISSIONS 

⇒ Probabilistic Scheme σ =
�

n

an

�
αs

L

tbr

�n

← tbr →

0 Lt

Successive branchings are then independent and quasi-local. 

tbr � t ∼ LTime-scale separation:
Markovian Process



Building blocks of medium-
induced cascade

I - The rate of elastic scatterings    C

II - The rate of inelastic scatterings    K



I - Rate for inelastic scatterings

C(l, t) = 4παsCAn(t)
�
γ(l)− δ(2)(l)

�
d2q γ(q)

�
The rate of elastic scatterings reads 

∂

∂t0
P(k; tL, t0) = −
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d2l

(2π)2
C(l, t0)P(k − l; tL, t0) ,

=∂
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t0 tL

0⊥ q⊥ k⊥

tLt0

0⊥

P P−
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• The broadening a probability  obeys the evolution equation

• when there are no branchings partons scatter off the color charges of 
the medium and acquire a transverse momentum        after a time                              

                         with a probability

  

P
k⊥

∆t = tL − t0



1− z
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p�p
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•  The 3-point function correlator accounts for instantaneous multiple scatterings of 
a 3 parton syst. It solves the Dyson-like equation

S(3)(t2, t1) = S(3)
0 (t2, t1) +

� t2

t1

dt� S(3)
0 (t2, t�) σ3(t�) S(3)(t�, t1)

S(3) ∼ � trT a UF (r1) T b U†
F (r0)Uab(r2)�med

• It is related to the expectation value of 3 wilson lines at time-dependent transverse 
coordinates (Brownian motion in T-space) 

σ(r) =
�

q
C(q) e−iq·r

the dipole cross-
section is related to the 
collision rate

z

I - Rate for inelastic scatterings



K(Q, l, z, p+; t) ≡ Pgg(z)
[z(1− z)p+]2

Re
� ∞

0
d∆t

�

P
(P · Q)S(3)(P ,Q, l, z, p+; t + ∆t, t)

- We work in the approximation 
of small branching times: 

∆t ≡ t2 − t1 ∼ tbr � t1, t2

Hence, one can neglect the difference      everywhere except in the 3-point 
function,  

∆t

Therefore, independent branchings can be described by the quasi-
local branching rate K and t is the ordering variable

zp+, q

p+, p

(1− z)p+, p − q + l

t

� L

0
dt1

� L

t1

dt2 ≈
� L

0
dt

� ∞

0
d∆t

I - Rate for inelastic scatterings

[See F. Dominguez’s talk]



Differential gluon distribution

The inclusive distribution of gluons with momentum k 
inside a parton with momentum p is defined as 
(with                    ):

k+ d N

dk+d2k
(k+,k, p+,p; tL, t0) ≡ D(x, k − xp, p+; tL, t0) ,

x ≡ k+/p+

k − xp ≡ ω(θk − θp) = ωθkp

Rotational invariance implies the dependence on the reduced variable



Differential gluon distribution

∂

∂tL
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� 1

0
dz

�

Q,l

�
2K

�
Q, l, z,

x

z
p+
0 , tL

�
D

�x

z
, (k −Q− zl)/z, tL

�
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0 , tL
�
D (x, k − l, tL)

�
−

�

l
C(l, tL)D (x,k − l, tL) .

Given the branching and elastic rates  K(t)  and C(t) respectively, 
with t being the ordering variable, it is then straightforward to write 
the evolution equation for D

k⊥

= −∂
∂ tL

p⊥p⊥k⊥

+
p⊥ q⊥

t0 tL tL

k⊥

tL tLt0 t0 t0

q⊥p⊥p⊥

x

xx

x
z

D DD D
k⊥ q⊥

x

q⊥xz

x

k�⊥ (k − l)⊥ (k − l)⊥

gain (real) loss (virtual) collision

[Integrating over kt we recover the rate 
equation:   Baier,  Mueller,  Schiff, Son (2001) 
Jeon , Moore (2003), ]

[See J.-P. Blaizot’s talk]



Diffusion approximation
Let us consider a highly energetic particle passing through the medium : 
x ~ 1 . The broadening acquired during a single scattering or a branching is small 
compared to the total broadening.  This allows us to expand the distribution D 
for small transverse momentum exchange

D (x,k − l) = D (x,k)− l · ∂

∂k
D (x,k) +

1
2!

lilj
∂

∂ki

∂

∂kj
D (x,k) + · · ·

�
d2l

(2π)2
C(l, tL) D (x,k − l, tL) ≈ 1

4
q̂0(tL)

�
∂

∂k

�2

D (x,k, tL) .

k⊥, x = k+/p+

p+

Hence, the elastic term, where the quenching parameter appears 
naturally as a diffusion coefficient, yields

l⊥ � k⊥

l⊥

Renormalization of the quenching parameter 



Inelastic correction (radiation) can be 
absorbed in a redefinition of 

Renormalization of the quenching parameter 

In the diffusion approximation the equation for D reduces to

q̂0(t) ≡
�

q
q2 C(q, t)

elastic quenching 
parameter
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Diffusion coefficient
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ω

k2
⊥
� ω

q2
⊥
� tbr ≡

�
ω

q̂0

The double logs correspond to gluons that are formed before the 
medium resolves the system «gluon-emitter» (no LPM suppression)

DL: a single (relatively) hard scattering  

Renormalization of the quenching parameter 

q̂(t, k2) ≈ q̂1(t,k2) + q̂0(t) ≡ q̂0(t)
�
1 +

αsCA

2π
log2

�
k2

m2
D

��

We find a Double-Log (DL) enhancement in the radiative correction 

q̂1(t, k2) ≈ αs CA

π

� k4/q̂0

q̂0λ2

dω

ω

� k2

k2
br

dq2

q2
q̂0(t)

z ∼ 1 and q2 � k2
br =

�
ωq̂0 ≡ q̂ tbr

Ordering in formation time

In agreement with a recent result on radiative corrections to 
pt-broadening.  A. H. Mueller, B. Wu, T. Liou arXiv: 1304.7677 



 To proof that the DL’s can be fully absorbed in a 
renormalization of the quenching parameter we shall compute 
the radiative correction to the 3-point function, i.e., to the 
radiation rate K. 

 

K[q̂0]→ K[q̂0 + q̂1]

Renormalization of the quenching parameter 

0 L

amp. 

amp.* 

t1 t2



0 L

amp. 

amp.* 

t1 t2t�1 t�2

On top of the branching described by K we allow the 
radiation of an additional, softer, gluon ω’ << ω < E, 
which is integrated out. 

Renormalization of the quenching parameter 

ω

ω’



0 L

amp. 

amp.* 

t1 t2t�1 t�2

On top of the branching described by K we allow the 
radiation of an additional, softer, gluon ω’ << ω < E, 
which is integrated out. 

ω

Renormalization of the quenching parameter 



0 L

amp. 

amp.* 

t1 t2t�1 t�2

DL region: The transverse wave length of the gluon’ is typically 
larger than the gluon-quark-antiquark system and fluctuates 
over a much smaller time than the branching time of gluon 

or

λ⊥

∆t� � ∆t � tbr(ω)and

ω

q⊥ � r−1
⊥λ⊥ � r⊥

Renormalization of the quenching parameter 

r⊥

The fluctuation is instantaneous for gluon ω and can occur with 
constant rate along the branching time Δt  



Renormalization of the quenching parameter 

+ Topologies

0 L

amp. 

amp.* 
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0
d∆t� δσ3(r⊥)

We obtain a correction to the radiation rate

K(t2, t1) = K0(t2, t1) +
� t2

t1

dt�K0(t2, t�) [σ3(t�) + δσ3(t�)] K(t�, t1)
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➡ The DL’s are resummed assuming strong ordering in formation time (or energy) 
and transverse mom. of overlapping successive gluon emissions (coherent 
branchings!) 

Renormalization of the quenching parameter 

q̂0 q̂1 q̂n

...

∆t0 ∼ 1/mD � L

∆t0 � ∆t1 � L

∆t0 � ∆t1 � ...∆tn � L

with
q̂(k) ∼ q̂0

�
k2

m2
D

�√ 4αsNc
π

∂ q̂(∆t,k2)
∂ log(∆t/∆t0)

=
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q̂∆t
ᾱs(q2)

dq2

q2
q̂(∆t, q2)

q̂0∆t0 ≡ Q2
0

q̂0∆tmax ≡ k2

k2 ∼ q̂L [In preparation]



Radiative Energy Loss

 As a consequence, the DL’s not only affects the pt-broadening 
but also the radiative energy loss expectation: 

∆E � αsq̂0L
2 → ∆E � αsq̂0L

2

�
1 +

αsCA

2π
log2 �

q̂0L/m2
D

��

∆E ≡
�

dω ω dN/dω

→ ∆E � αsq̂0L2

4
√

π ᾱ3/4
s log3/2(q̂0L/m2

D)

�
q̂0L

m2
D

�q
4αsCA

π

When the logs become large (asymptotic behavior)

Typically the transport coefficient runs up to the scale k2 ∼ q̂0L



Radiative Energy Loss

∆E ∼ L2

∆E ∼ L3

Path-length dependence of mean energy-loss: 

I- weak coupling (BDMPS)

II- strong coupling (ADS/CFT)

III- weak coupling (BDMPS+Dlogs)

0 < γ ≡
�

4αsNc/π < 1

∆E ∼ L2+γ

where

[F. Dominguez et al (2008) C. Marquet (2009)] 

Larger quenching parameter ⇒ Larger energy loss



SUMMARY
✓  In the limit of a dense medium,  parton branchings 
decohere due to rapid color randomization except for 
strongly collimated partons (unresolved by the medium)
✓ In the decoherent limit: factorization of multiple 
gluon emissions
➡  Probabilistic picture ⇒ Monte-Carlo 

Implementation
✓ Coherent radiations with formation times much 
shorter then the branching time lead to potentially large 
Double Log enhancement that can be resummed and 
absorbed in a renormalization of the quenching 
parameter



Jets in HIC at the LHC

DPbPb

Dpp

�
ξ = ln

ph

pjet

�
RAA ≡

1
Ncoll

dN jet
PbPb

dN jet
pp

(pT )

(I) Significant dijet energy asymmetry
(II) Soft particles at large angles
(III) medium-modified fragmentation

Fragmentation 

fct.

dijet asymmetry

CMS
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I - Rate for elastic scatterings

σ(r) =
�

q
C(q) e−iq·r

the dipole cross-
section is related to the 
collision rate

Q ≡ q − zp�
P ≡ q� − zp

p� − p ≡ l

u ≡ r2 − r1

v ≡ zr2 + (1− z)r1 − r0

S(3)(P ,Q, l, z, p+; t2, t1) =
�

du1du2dv eiu1·P−iu2·Q+iv·l

×
� u2

u1

Du exp
�

iz(1− z)p+

2

� t2

t1

dt u̇2 − Nc

4

� t2

t1

dt n(t) [σ(u) + σ(v − zu) + σ(v + (1− z)u)]
�

Transverse momenta generated in the splitting (in the amp. and comlex. conj.) 
are conjugate to the dipole size

Transverse momentum acquired by collisions conjugate to the diff. of centers of mass

1− z

t1 t2

q

p q�
(r2)

(r1)

(r0)

p�p
q

0 L

amp. 

amp.* 



M⊥ ≡ E θjet

Q0 ∼ ΛQCD
+

r−1
⊥ jet ≡ (θjetL)−1

Qs ≡
�

q̂L ≡ mD

�
Nscat

QGP

L

Q−1
s

M⊥ ≡ E θjet r⊥ jet

In-medium color correlation length
jet transverse size

Color transparency for                 or r⊥ < Q−1
s

r⊥ > Q−1
s

θjet < θc ∼
1�
q̂L3

Decoherence Y. M.-T, K. Tywoniuk, C. A. Salgado (2010-2012)
J. Casalderray-Solana, E. Iancu (2011)  

Qs-1

MULTISCALE PROBLEM



a

c

b

COLOR COHERENCE IN A FEW WORDS 

ω
dNa

dωd2k⊥
∝ αsCb

k2
⊥

+ (b→ c)

large angle emission by the total charge (destructive interferences) 

Incoherent emissions at small angles 

θ � θbc (k⊥ � ωθbc)ω
dNa

dωd2k⊥
∝ αsCa

k2
⊥

θ � θbc (k⊥ � ωθbc)

Consider the radiation of a gluon off a system of 
two color charges a and b.

large angle gluon radiation does not resolve the 
inner structure of the emitting system



Integrating over transverse momenta, the contribution to the classical 
broadening vanishes 

�

l
C(l, tL) = 0

∂

∂τ
D(x, τ) =

�
dz K̂(z)

��
z

x
D

�x

z
, τ

�
− z√

x
D(x, τ)

�
,

Toy Model:  Keeping the singular part at z=0 and z=1

The exact solution for D(x,E,L) reads 

K = P (z)

�
q̂eff

z(1− z)E
≈

�
q̂

E

1
z3/2(1− z)3/2

D(x) =
ᾱ

(1− x)3/2

�
q̂L2

Ex
exp

�
−π

ᾱ2q̂L2

(1− x)E

�

Similar eq. postulated: R. Baier, A. H. Mueller, D.  Schiff, D. T. Son (2001) S. Jeon, G. D. Moore(2003)  

We obtain the simplified equation J.-P. Blaizot, E. Iancu, Y. M.-T., arXiv: 1301.6102 [hep-ph] 

Energy flow: democratic branching



Energy flow: democratic branching

t = ᾱ

�
q̂L2

E
D0(x) = δ(1− x)Initial condition:

D(x) ∼ t√
x

e−πt2

x� 1

scaling spectrum 

Partons disappear in 
the medium when 

E < ᾱ2
s q̂L2

0.001 0.01 0.1 1

x
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1
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1000

D
(x

,t)

t=0.01 
t=0.5 
t=1 
t=1 1.5

Energy Flow

1/
√

x

Energy flows uniformly from hard to soft modes without 
accumulation ➡  indication of wave turbulence 

� 1

0
dxD(x) = e−πt2 < 1Energy in the 

spectrum ➡  indication of a condensate at x=0 



Remember: The radiation rate obeys a Dyson-like equation

0 L

amp. 

amp.* 

t1 t2

K(t2, t1) = K0(t2, t1) +
� t2

t1

dt�K0(t2, t�)σ3(t�)K(t�, t1)

σ3(t�, r⊥) ∼
�

3dip

q̂ r2
⊥ K ∼ � trT a UF (rq)T b U†

F (rq̄)Uab(rg)�med

where the instantaneous interaction with the medium is encoded in the 3-
dipole cross-section 

Renormalization of the quenching parameter 



In the soft regime                 ω � E

k2⊥ � k1⊥

θ2 > θ1

θ1 < θ2 �
ω1

ω2
θ1

Radiation suppressed at             because of coherence 
phenomena: Interference of 1 with 2 at large angles 

kT ordering fails!

Ladder diagrams (no interferences) resum mass singularities:
Strong ordering in kT (DGLAP) 

d

d lnM⊥
DB

A(x,M⊥) =
αs

2π

� 1

x

dz

z
PC

A (z) DB
c (x/z, M⊥)

E

1

2

...
N

θ2θ1 θN

M⊥ � k⊥1 � k⊥2 � ...� k⊥N

FACTORIZATION OF  BRANCHINGS IN VACUUM 



0th order (no-splitting)   and   1st order (1-splitting) 

J⊥(p, x+
0 )

p p′

L

J⊥(p, x+
0 )

p p′

L

k1

k2

p′ − q′

q′

+

•  Propagators: Brownian motion in transverse plan

p+ � k⊥ ∼ p⊥•  eikonal propagation:• mixed representation

(p⊥, p+, x+ ≡ t)

• For instance the 0th 
order amplitude reads

parton shower in classical background field A(x+, x⊥)

A(x+, x⊥) A(x+, x⊥)

BUILDING IN-MEDIUM JET EVOLUTION: 



J∗(p′, x+
0 )

p′ k

L

J(p, x+
0 )

p k

L

0th order (no-splitting)        

P(k, ξ) =
4π

q̂ ξ
e−

k2
q̂ξ

S(2) ≡ �GG†�
• 2-point function correlator 

• Prob.  for kt broadening 

• Medium average (Gaussian white noise) 

t

BUILDING IN-MEDIUM JET EVOLUTION: 

�
A−

a (q, t)A∗−
b (q�, t�)

�
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Color decorrelation (decoherence) 

BUILDING IN-MEDIUM JET EVOLUTION: 

gluons are decorrelated after 
they are produced  
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BUILDING IN-MEDIUM JET EVOLUTION: 

gluons are decorrelated after 
they are produced  



FACTORIZATION OF  BRANCHINGS IN VACUUM 

p

k

∼ E

(p + k)2

tf ≡
E

(p + k)2
∼ E

2p · k
∼ ω

k2
⊥

k⊥ > Q0

dP =
αs CR

π
P (z) dz

d2k⊥
k2
⊥

z = ω/E
M⊥ ≡ E θjet

A highly virtual parton branches typically 
over a time (formation time) 

the diff-branching probability

αs → αs ln2 M⊥
Q0

phase-space enhancement
soft and collinear divergences

For arbitrary number of parton branchings the logarithmic regions are 
accounted for via strong ordering of formation times

tfN � ...� tf2 � tf1


