LHC Physics Analysis and Databases

or: "How to discover the Higgs Boson inside a database"

Maaike Limper

Introduction to LHC physics analysis

Plots of the invariant mass of photon-pairs produced at the LHC show a significant bump around 125 GeV

The discovery of a "Higgs boson-like" particle!

http://www.bbc.co.uk/news/world-18702455

- The work of thousands of people!
- Operations of LHC and its experiments rely on databases for storing conditions data, log files etc.

... but the data-points in these plots did not came out of a database!

Analysis versus reconstruction

Event Reconstruction focuses on creating physics objects from the information measured in the detector (detectors hits → particle trajectory) Event Analysis focuses on interpreting information from the reconstructed objects to determine what type of event took place

Data analysis in practice

LHC Physics Analysis is done with ROOT

- Dedicated C++ framework developed by the High Energy Physics community, http://root.cern.ch
- Provides tools for plotting/fitting/statistic analysis etc.

ROOT-ntuples are centrally produced by physics groups from previously reconstructed event summary data

Each physics group determines specific content of ntuple

- Physics objects to include
- Level of detail to be stored per physics object
- Event filter and/or pre-analysis steps

Ntuples=column-based storage: data is stored as "TTree" object, with a "TBranch" for each variable

Variables for each event in the form of scalar (number of muons), vectors (energy of each muon), vector-of-vectors (position of each detector hit for each muon)

Data analysis in practice

Analysis is typically I/O intensive and runs on many files

Small datasets → copy data and run analysis locally

Large datasets: → use the LHC Computing Grid

- Grid computing tools split the analysis job in multiple jobs each running on a subset of the data
- Each sub-job is sent to Grid site where input files are available
- Results produced by sub-jobs are summed

Bored waiting days for all grid-jobs to finish >> Filter data and produce private mini-ntuples

My Openlab Project: Can we replace the ntuple analysis with a model where data is analysed inside a centrally accessible Oracle database?

My performance study for analysis inside the database used as benchmark: "The search for a Higgs production in association with a Z boson"

- Higgs decays to two b-quarks, select good b-jets
- Z boson decays to lepton-pair, select two good muons or two good electrons
- Require specific Event Filter (EF) triggers to select events
- Require "good lumi-blocks" from Event Data
- Require Missing Transverse Energy (MET) less than 50 GeV to exclude top-pair events

Date: 2012-09-05 Time: 03:57:49 7UTC

Database design

Oracle DB has row-based storage:

Separate tables for different physics objects, so users have to read only the object-tables relevant for their analysis

DATA12_8TEV	columns	k rows	k block	size MB	
eventData	52	7223	177	1387	
MET_RefFinal	62	7223	330	2577	
EF (trigger)	490	7223	1034	8080	
muon	251	8029	2331	18212	
jet	171	33224	4764	37219	
electron	340	49527	12396	96841	
			total GR	164	

1366 variables, divided over 5 different tables

My test-sample "DATA12_8TEV":

- ATLAS experiment data taken in 2012 with collission energy of 8 Tev
- 7.2 million events
- ~ 0.5% of all collision events recorded by ATLAS in 2012
- Corresponds to 127 ntuple-files

The (simplified) Z+H benchmakr analysis uses 40 of these variables

To run the analysis in the DB we need to transform a root-macro into a SQL-query

Physics Analysis C++

Root-analysis: Load relevant branches in ntuple-tree, loop over events, apply selection cuts and fill histograms:

```
vector<float> el_pt;
vector (float) el eta;
tree->getBranch("el_pt",&el_pt);
tree->getBranch("el_eta",&el_eta);
//etc.
for ( ievent = 0; ievent<nevents; ievent++){
   //find good electrons
   tree->NextEvent();
   for(i=0; i<nelectrons; i++){
     if(el_pt[i] > 25. && fabs(el_eta[i])<2.5 etc.) ngoodelectron++;
  //etc. for muon, jet, EF selections
  //select events with 2 selected muons or 2 selected electrons and 2 good b-jets
  //after passing selection cut reconstruct invariant mass, apply combined cuts etc.
  // fill histograms
```


Physics Analysis SQL

Single SQL-statement to reproduce physics analysis

Query starts by applying selection criteria via select-statements on relevant tables:

```
with sel_electron as (select "electron_i","EventNo_RunNo", etc from "electron" where "pt" < 25. and abs("eta") < 2.5 \cdots etc. ), sel_muon as (select "muon_i","EventNo_RunNo", etc from "muon" where "pt" < 20. or abs("eta") < 2.4 \cdot etc. ), sel_bjet as ( select "jet_i","EventNo_RunNo", etc from "jet" where "pt">25. and abs("eta") < 2.5 and mv1("wIP3D", "wSV1", "wFCN",...)>0.6017),
```

Followed by JOINs to find events with two b-jets and two muons or two electrons in which the invariant-mass of the electron/muon-pair and the b-jet pair is calculated and other combined selections are applied Calculations are done via PL/SQL functions except for one function for the b-jet selection that is called from C++-library

Finally a super-join where the calculated quantities, used to fill histograms, are returned:

select "EventNo_RunNo", "EventNumber", "RunNumber", "DiMuonMass", "DiElectronMass", "DiJetMass" from sel_muon_events FULL OUTER JOIN sel_electron_events USING ("EventNo_RunNo") INNER JOIN sel_bjet_events USING ("EventNo_RunNo") INNER JOIN sel_EF_events USING ("EventNo_RunNo") INNER JOIN sel_goodlbn_events USING ("EventNo_RunNo")

Ntuples vs DB performance

Both DB and ntuple analysis produce (almost) the same plot!

From Oracle Database

From root-ntuples

One double event in ntuple-analysis (due to overlapping trigger-streams)
Oracle DB does not contain double events due to unique constraint on EventNumber

Ntuples vs DB performance

Analysis from Oracle database up to 4.5 times faster than standard ntuple analysis

Improvement of query time with parallel execution is limited by I/O wait time

Benchmark analysis on "DATA12_8TEV"	Duration (s)	CPU time	I/O wait	PL/SQL	Java	
Degree of Parallelism 1 (serial)	1450	890	630	21		210
Degree of Parallelism 8	780	840	5117	19		200
Standard root-analysis from ntuples*	3630					

^{*}on same machine and storage as DB

Improvement of query time with parallel execution is limited by I/O wait time!

Many Physicists!

A real physics analysis database should be able to handle multiple users accessing the same data at the same time, with each user sending a unique analysis query corresponding to the signal they are looking for

The effect of parallelism and I/O bandwidth is similar to many users accessing the same data

Compare the performance of the Oracle DB analysis with Hadoop!

Hadoop is supposed to have fast I/O by using data-locality, I prepared a basic test:

- Physics-data stored as text-files in *hadoop filesystem (hdfs)*
- Reproduce Z+H benchmark analysis with MapReduce-code (java!)
- Mappers: one mappers per object to select muon, electron etc.
- Reduce: select events with 2 good leptons and 2 b-jets, calculate invariant mass

Tests used a 5-machine cluster that could run either Hadoop or Oracle RAC

Conclusion/Outlook

LHC data analysis provides a real "big data" challenge

An unique benchmark to study the ability of the Oracle database to perform complex tasks on a large set of data

A central database running on a cluster of machines could provide a platform for physicists to perform analysis on data stored in the database

- I/O is a bottleneck, especially with many users accessing the same data
- Column-based data storage to be explored (some hints by Oracle this will be introduced in future 12c versions)
- To be continued...