Vandex

Yandex

Introduction to Machine Learning

Andrey Ustyuzhanin Head of CERN-Yandex joint projects

Overview

- 1.Introduction
- 2. History of Machine Learning
- 3. Problems
- 4. Approaches
- 5.Demo

Quick intro

Share of Searches¹

Brief History of ML

- 1. Statistics
- 2. Artificial Intelligence
- 3.Expert Systems

. . .

4. Machine Learning

Math & Stats

There is a e-commerce website:

10000 users

100 clients (buying something)

Test (T):

Predict that user is a client - 99%

Predict that user is not a client - 99%

What is probability that U is a client if T == True?

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}.$$

P(x is client | T == 1) = 1/2

Math & Stats

You have a website

People visit it regularly

Probability that someone comes in during 3sec = 0.992

Question:

What is probability of someone coming in during 1 sec?

Meta transition: Statistics → Data Science

"How can we build computer systems that automatically improve with experience, and what are the fundamental laws that govern all learning processes?"

-- Tom Mitchell, CMU

Applications

- 1.Webpage search ranking (as well as news, images and mail search),
- 2.Advertisement selection,
- 3. User behavior modeling,
- 4. Spam filtering,
- 5. Social-demographics

Large scale

1.Consists of

- Math
- Tools
- Infrastructure

2.Pipeline:

- Get Data
- Scrub
- Explore
- Model
- Interpret

Regression Problem

Housing price prediction.

Supervised Learning 'right answers' given Regression: Predict continuous valued output (price)

Classification Problem

Breast cancer (malignant, benign)

Classification

Discrete valued output (0 or 1)

Multiclassification Problem

Binary classification:

Multi-class classification:

Event is...

Event Classification (binary)

Training Process

- 1.Get Train/Test Data
- 2. Chose set of features
- 3. Define Figure of Merit function
- 4. Define Cost function
- 5. Chose classifier parameters
- 6.Train
- 7.Evaluate
- 8.Repeat

Confusion matrix

Quality Measures - 1

Precision/Recall -- BEP

Quality Measures - 2

- 1. F-Score = 2 * Precision x Recall / (Precision + Recall)
- 2. LogLikelihood = sum {log P}
 - Convex function with derivatives
 - Used as a proxy for non-continuous functions like AUC/ BEP etc

Training diagnostics. Learning curve

Training problems

Overfitting example

Once parameters $\theta_0, \theta_1, \dots, \theta_4$ were fit to some set of data (training set), the error of the parameters as measured on that data (the training error $J(\theta)$) is likely to be lower than the actual generalization error.

Linear regression with regularization

$$\text{Model: } \left[h_{\theta}(x) = \theta_0 \right] + \underbrace{\theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4}_{m} \leftarrow J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \underbrace{\frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2}_{j=1} \leftarrow J(\theta) \right]$$

Large λ \leftarrow

→ High bias (underfit)

$$\lambda = 10000. \ \theta_1 \approx 0, \theta_2 \approx 0, \dots$$

$$h_{\theta}(x) \approx \theta_0$$

Intermediate λ \leftarrow "Just right"

 \rightarrow Small λ High variance (overfit)

Choosing the regularization parameter λ

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4}$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^{2}$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x^{(i)}_{test}) - y^{(i)}_{test})^{2}$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x^{(i)}_{test}) - y^{(i)}_{test})^{2}$$

Bias/variance as a function of the regularization parameter $\,\lambda\,$

Debugging algorithm

- 1.Get more training examples
- 2. Try smaller sets of features
- 3. Try getting additional features
- 4. Try adding polynomial features
- 5. Try decreasing regularization (1)
- 6.Try increasing (λ)

Event Filter Demo

Some links to follow

- 1.http://bigml.com
- 2.http://about.wise.io/
- 3.http://scikit-learn.org/stable/
- 4.http://orange.biolab.si/
- 5.http://tmva.sourceforge.net/
- 6.R
- 7. Coursera Machine Learning course (thanks to Andew Ng for a couple of slides)

Another meta transition awaiting...

«How research & learning can be automated?»

Machine Learning Way

Yandex

CERN

Gathering data for testing, learning, verification

Logs, user models

Experimental data, simulation

Learning

MatrixNet

Cut-based analysis, TMVA

Application

Automatic

Manual mode

Machine Learning Way, Continued

Yandex

CERN

Analytics, quality monitoring

Quality metric definition, automated verification & monitoring

Manual mode

Feature assembly line

Yes

Manual mode

IPython demo.

Every 14 minutes, somewhere in the world, an ad exec strides on stage with breathless declaration:

Every 14 minutes, somewhere in the world, an ad exec strides on stage with breathless declaration:

«Data is the new oil!»

Andrey Ustyuzhanin

anaderi@yandex-team.ru

Thank you