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Quick intro
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1 Source: Uvelnternet.ru, February 2013. Search traffic reflects Russian users to Russian websites and indudes desktop and mobile



Brief History of ML

1.Statistics
2.Artificial Intelligence
3.Expert Systems

4.Machine Learning




There Is a e-commerce website:
10000 users
100 clients (buying something)

Test (T):
Predict that user is a client - 99%
Predict that user is not a client - 99%

What is probability that U is a client if T == True?
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P(xisclient| T==1)=1/2




You have a website
People visit it regularly

Probability that someone comes in during 3sec = 0.992

Question:
What is probability of someone coming in during 1 sec?




"How can we build computer systems that
automatically improve with experience, and what
are the fundamental laws that govern all learning

processes”?”

-- Tom Mitchell, CMU







1.Webpage search ranking (as well as news, images and malil
search),

2.Advertisement selection,
3.User behavior modeling,
4.Spam filtering,

5.Social-demographics




1.Consists of
— Math
— Tools
— Infrastructure

2.Pipeline:

— Get Data
Scrub
Explore
Model

Interpret




Regression Problem

Housing price prediction.
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Classification Problem

Breast cancer (malignant, benign)
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Multiclassification Problem

Binary classification: Multi-class classification:




1 Collision point: Marks the spot 6 Ring Imaging
where protons from the 2 beams Cherenkov
smash into each other detectors
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Event Classification (binary)
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1.Get Train/Test Data
2.Chose set of features
3.Define Figure of Merit function

4.Define Cost function
5.Chose classifier parameters
6.Train

/.Evaluate

8.Repeat




Confusion matrix




Quality Measures - 1
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1. F-Score = 2 * Precision x Recall / (Precision + Recall)
2. LogLikelihood = sum {log P}

— Convex function with derivatives

— Used as a proxy for non-continuous functions like AUC/
BEP etc
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Training diagnostics. Learning curve
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Overfitting example

h@(ZE) =0y + 01 —I-_(?_Qibz
+ 0323 + O,42°

size

Once parameters 6y, 01,...,04
were fit to some set of data
(training set), the error of the
parameters as measured on
that data (the training error
J(0))is likely to be lower
than the actual generalization
error.
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Linear regression with regularization
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Choosing the regularization parameter A

ho(x) = 0g + 012 + Oax® + O32° + 0,27
— 1 Z(he(ﬂf(i)) — y(9)2

(%) (4)
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Bias/variance as a function of the regularization parameter A

\JGironea




Debugging algorithm

1.Get more training examples
2.Try smaller sets of features
3.Try getting additional features
4.Try adding polynomial features

5.Try decreasing regularization (1)\} 2
6.Try increasing (A)

The Alchemist.



Event Filter Demo




http://bigml.com
http://about.wise.io/
http://scikit-learn.org/stable/

http://orange.biolab.si/

http://tmva.sourceforge.net/
R

/.Coursera Machine Learning course
(thanks to Andew Ng for a couple of slides)
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Another meta transition awaiting...

«How research & learning
can be automated?»
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Machine Learning Way

Yandex CERN

Gathering data for testing, learning, verification

Logs, user models Experimental data,
simulation
MatrixNet Cut-based analysis,
TMVA
Application
Automatic Manual mode
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Machine Learning Way, Continued

Yandex CERN

Analytics, quality monitoring

Quality metric Manual mode
definition, automated
verification &
monitoring

Feature assembly line

Yes Manual mode



IPython demo.



Every 14 minutes,
somewhere In the world,
an ad exec strides on stage
with breathless declaration:




Every 14 minutes,
somewhere In the world,
an ad exec strides on stage
with breathless declaration:

«Data 1s the new oll!»




Ya n d eX Andrey Ustyuzhanin

anaderi@yandex-team.ru
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