CHATS on Applied Superconductivity 2013

Wednesday, 9 October 2013 - Friday, 11 October 2013 Cambridge, MA

Book of Abstracts

Contents

Process Analyses of ITER Toroidal Field Structure Cooling Scheme	1
Cross comparison of thermo-hydraulic analysis of the ITER magnets using two code systems	1
"Transverse heat transfer coefficient in the dual channel ITER TF CICCs. Part II. Analysis of transient temperature responses observed during heat slug propagation tests	1
Artificial Neural Network (ANN) Modeling of the Pulsed Heat Load during ITER CS Magnet Operation	1
Simplified dynamic model of the heat loads on the ITER magnet system	1
Application of the 4C code to the thermal-hydraulic analysis of the CS superconducting magnets in EAST	1
Investigations about Helium Mass Expulsion and Heat Exchange Coefficients in CICCS: Predictive Analysis on Possible Experiments in HELIOS	1
Zero Dimensional Approach to Investigate the Thermal Stability of Superconducting Cables	2
Experiment Proposal to Quantify the Thermal Response of Superconducting Cable Stacks to Pulse Heat Loads	2
Analysis of stability margins of four ITER Central Solenoid conductor designs during a 15 MA plasma scenario with JackPot-ACDC	2
Advances in Numerical Coding of Two Fluid HeII Model	2
Modeling of radio frequency heating and current drive in tokamaks in the ion cyclotron and lower hybrid frequency ranges. Massively parallel programming, integrated multiscale, multiphysics modelling	2
Quench modeling in accelerator magnets using a general-purpose code system	2
A computer code for comprehensive analysis of quench in pool-cooled and adiabatic super- conducting multi-coil magnets	3
Thermal and flow processes in cryogenic systems following failure modes combined with superconducting magnets resistive transitions	3
Influence of HTS Wire and Coil Configuration on Quench Propagation	3
First Experience with the New Coupling Loss Induced Quench System	3

Hot spot temperature experiment for a cable-in-conduit conductor with thick conduit	3
QXF protection challenges, current analysis and key parameters/assumptions being used	3
New approaches to heater design, comparison with existing ones, and plans for validation in model magnets	3
An approximate electromagnetic model for superconducting helically wound cables and cable-in-conduit conductors	4
Effect of combination of twist pitches on distribution of strands appearing on cable surface in CICC	4
A novel modeling of the critical current degradation of Nb3Sn PIT strand under transverse load based on Finite Element Analysis and strain scaling laws	4
2G HTS Properties Beyond Critical Current	4
Numerical models of HTS for AC loss computation: how far do we need to go?	4
Magnetization losses due to any combination of rotating and alternating fields in supercon- ducting filaments driven by a power-law voltage-current behavior	4
Multi-pole components of magnetic field in small dipole magnets wound with coated con- ductors	4
Finite Element Investigation of HTS Tapes for Twisted Stacked-Tape Cabling Methods	5
Quench Protection for High Temperature Superconducting Magnets based on Fiber Optic Distributed Temperature Sensing	5

Process Analyses of ITER Toroidal Field Structure Cooling Scheme

_

7

Cross comparison of thermo-hydraulic analysis of the ITER magnets using two code systems

8

"Transverse heat transfer coefficient in the dual channel ITER TF CICCs. Part II. Analysis of transient temperature responses observed during heat slug propagation tests

9

Artificial Neural Network (ANN) Modeling of the Pulsed Heat Load during ITER CS Magnet Operation

10

Simplified dynamic model of the heat loads on the ITER magnet system

11

Application of the 4C code to the thermal-hydraulic analysis of the CS superconducting magnets in EAST

12

Investigations about Helium Mass Expulsion and Heat Exchange Coefficients in CICCS: Predictive Analysis on Possible Experiments

in HELIOS

13

Zero Dimensional Approach to Investigate the Thermal Stability of Superconducting Cables

14

Experiment Proposal to Quantify the Thermal Response of Superconducting Cable Stacks to Pulse Heat Loads

15

Analysis of stability margins of four ITER Central Solenoid conductor designs during a 15 MA plasma scenario with JackPot-ACDC

16

Advances in Numerical Coding of Two Fluid HeII Model

17

Modeling of radio frequency heating and current drive in tokamaks in the ion cyclotron and lower hybrid frequency ranges. Massively parallel programming, integrated multiscale, multiphysics modelling

18

Quench modeling in accelerator magnets using a general-purpose code system

A computer code for comprehensive analysis of quench in poolcooled and adiabatic superconducting multi-coil magnets

20

Thermal and flow processes in cryogenic systems following failure modes combined with superconducting magnets resistive transitions

21

Influence of HTS Wire and Coil Configuration on Quench Propagation

22

First Experience with the New Coupling Loss Induced Quench System

23

Hot spot temperature experiment for a cable-in-conduit conductor with thick conduit

24

QXF protection challenges, current analysis and key parameters/assumptions being used

25

New approaches to heater design, comparison with existing ones, and plans for validation in model magnets

An approximate electromagnetic model for superconducting helically wound cables and cable-in-conduit conductors

27

Effect of combination of twist pitches on distribution of strands appearing on cable surface in CICC

28

A novel modeling of the critical current degradation of Nb3Sn PIT strand under transverse load based on Finite Element Analysis and strain scaling laws

29

2G HTS Properties Beyond Critical Current

30

Numerical models of HTS for AC loss computation: how far do we need to go?

31

Magnetization losses due to any combination of rotating and alternating fields in superconducting filaments driven by a powerlaw voltage-current behavior

32

Multi-pole components of magnetic field in small dipole magnets wound with coated conductors

Finite Element Investigation of HTS Tapes for Twisted Stacked-Tape Cabling Methods

34

Quench Protection for High Temperature Superconducting Magnets based on Fiber Optic Distributed Temperature Sensing