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Helium cryogenics in chosen projects

Helium
Installation, location Type Cooling power | inventory
LHC, CERN, Geneva pp collider 144 kW 136 ton
FAIR, GSI, Darmstadt | ions accelerator | 42 kW @ 4.4 11 ton
XFEL, DESY, Hamburg free electron 12 kW 5 ton
laser
W7-X, Max Planck fusion stellarator 5 kW 2 ton
Greifswald
ITER, ITER IO, fusion tokamak |60 kW@ 4.5 K| 24 ton
Cadarache 950 kW @ 80
K
ILC, no decision e+ e- lin. collider | 211 @ 4.5K 100 ton
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Cryogenic node - simplest element of the
cryogenic system - basis for the risk analysis

Each component of the machine like pipe, vessel, heat exchanger, and
cryostat can been treated as separate helium enclosure, characterized by
the amount and thermodynamic parameters of helium.
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Potential failure modes of cryogenic

systems

1.

2.

Mechanical break of warm vacuum vessel
followed by air flow to insulation vacuum space.
Mechanical break of cold vessel or process pipe
followed by helium flow to insulation vacuum
space.

Electrical arc caused by faulty joint of
superconducting cables leading to the
consequences similar like in failure 2, but on a
much more extensive scale

Extensive resistive transition of superconducting
magnets and quench propagation — non foreseen
as operational mode
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Flow consequences of mechanical

break of cold vessel, including el. arc

1. Mechanical and/or arc induced
break of the cold vessel
2. Fast degradation of the vacuum
Insulation with cryogen.
3. Intensive heat flow to the
cryogen.
4. Energy release to the helium,
~ e.g., due to a magnet quench
(optionally) or eddy current
heating.
5. Pressureincrease of the cryogen
and in the vacuum space.
. % p/ J 6. Opening of the rupture disk
Q and/or safety valve.
7. Cryogen discharges through the
rupture disk and/or safety valve.

cryogen -
TR
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Safe operation of
cryogenic systems
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Pressurization of the vacuum space caused serious
damage of the LHC accelerator in 2008
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ITER Cryogenic System

Cryodystribution
: lines and boxes in
the tokamak building

N Main cryogenic
’ transfer lines

Helium and nitrogen liquefiers e
in the cryoplant buildings -
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ITER Cryodistribution System in

tokamak building
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Steps in Risk Analysis of cryogenic

systems

1. Identification of the cryogenic system nodes, their design and
operation features,

2. ldentification of the locations of the nodes in the site facilities,

3. Analysis of the potential failures and the determination of credible
incidents (risk factors, frequency of occurrence, level of detestability,
importance of defects),

4. ldentification of credible scenarios for chosen components and the
analysis of their potential causes and consequences,

5. Specification of the most credible incident and most credible
scenario,

6. Dynamics simulations of the most credible and severe helium
leakages to the vacuum insulation and to the environment (including
oxygen deficiency hazard and the influence of cold helium impact on
mechanical structures),

7. Proposal for the mitigation of the most credible incident
consequences,

8. Formulation of remedial actions.
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Modelling of helium flows to vacuum

insulation space - two cases

CASE 1 - magnets immersed in static helium —e.g. LHC

10000
SOLD ="
1000
) CRITICAL O
Aljin
Hell Hel
o
e 1 o | ¥ /

TKI

CASE 2 —coils cooled by helium flow (supercritical) —e.g. ITER

Without active [ To/from Cryoplant ]
control of the £ With active control
cooling loop of the cooling loop
cC ,
HX
e i
H
4 ( LHe bath 4
A
X —
SHe
Pump

~ 6000 t of Structures [ To/from Structures ] usedas thermal damper
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Development of mathematical model of

the processes in static helium (e.g. LHC)

3xQV 2xSV

Pse=17bar Psei=1.07bar
et st Vacuum vessel Thermal shield Cold mass

X £ / /7
/

w=2dq+2d(m-h)

qRatear. * «.»qRatem B qrate,, qRate;s
\ /
Holes 2x32cm? @ t=0s Holes 2x30cm? @ t=22s

Lumped parameter approach, thermodynamic model input:

qRateqecnch — heat transfer to Cold Mass helium from quenched magnets

gRate,,.  — heat transfer to helium from electrical arc
gRatey,;  — heat transfer to Vacuum helium form Vacuum Vessel
gRate,,; — heat transfer to Vacuum helium form Aluminum Shield

gRate, — heat transfer to Cold Mass helium from Vacuum helium
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Magnet quench heat transfer to cold mass

helium - data from String experiments

1000 1.E406
s Data can be scaled
g 1 == according to the
2 _ equation
E 10 +04 1
. 2
Emag = E L1
1 } & 4 1.E+03
9 D 40 %D &0 160 120

time, s

M. Chorowski, P. Lebrun, L. Serio, R. van Weelderen - Thermohydraulics of Quenches and Helium Recovery in the LHC
Magnet Strings - LHC Project Report 154
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Exemplary calculation of magnet

structure temperature for 10 MJ coil

1200000 80
g 1000000 - 77
c -+ 60 «
£ - S -
£ isooooo _ 150 Sg
o2 —— Heat in mag, W =5
© g 600000 - —— Temperature, K |+ 40 g ©
g S c o
(5 .,U:’ T 30 % g-
= " 400000 ~ = o
5 T 20
I -

200000 1 10

O I I I I O
0 5 10 15 20 25

Time, s

|
— Tal ‘ dE Magnet current decay
E = ledl Qmag = dt characteristics must be known
0
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Electrical arc

An electrical arc can origin at faulty joint of superconducting
cables. The phenomenon leads to rapid and uncontrolled energy
transfer from the magnet to helium and metal structure forming the
second electrode.

Upper Copper
Profile Superconducting

Upper Tin/Silver # e
¢ ilizer
Soldering alloy Layer \

Lower Tin/Silver
Soldering Alloy Layer

Inter-Cable Tin/Silver
Soldering Alloy Layer \ /

S

Lower Copper U S ey
Froflle Cable Junction Box | S

Cross-section

Completed
Junction

Bajko M., et.al., Report of the task force on the incident of 19 September 2008 at the
LHC, LHC Project Report 1168, Geneva, 31/03/2009



por— NO elecrical contact belween wedge ana U-promnie NO DOnding at jJoint with e
‘sj? with the bus on at least 1 side of the joint U-profile and the wedge

Figure 7: Model of resistive joint in bus bar
with bad electrical and thermal contact with the stabilizer

22 —+

U air

t >
10 d [mm]

Evolution of ignition voltages with
respect to distances between
electrodes

LHC interconnection

Bajko M., et.al., Report of the task force on the incident of 19 September 2008 at the
LHC, LHC Project Report 1168, Geneva, 31/03/2009
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Electrical arc modelling

Rarc L dt diarc

1443 57.] Warrington formula

arc | is the arc length

R
—1

i(t)=ie - u(t) = u, e




43

R R
—1

(t)- i(t) P(t) = P(O)ette_k'- Arc power

W = P(t)dt The energy relieved by the arc

U

=2

~—"
|
-
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Evolution of the arc power - examples

7.E+06
140000

Arc power

6.E+06

120000

5.E+06 -
100000

T 4E+06
80000 -

Power, W

[=]
& 3.E+06 4
60000 - 2 E+06 |

40000 -

1.E+06

20000 -

0.E+00

0 20 40 60 80 100
Time (s)

0

0 200 400 600 800 1000
Time, s

Low current, 10 MJ magnet, calculated Heat flux resulting from electrical arc
during the 19th September 2008 incident
for the initial arc current 8.7 kA

Arc energy distribution

1. Heating and melting resulting in perforation of the cold vessel or cryostat tube,
2. Arc atmosphere (helium) ionization, heating and pressurization,

The ratio IONIZATION / ELECTRODE in helium is estimated as: 50 : 1
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Cold vessel rupture by electrical arc

At
d(t)= o g The diameter d of the
\ [ [c,dT + I‘]ﬂ-p- z melted breach
45K

For 10 MJ of a stored inductive energy and a wall thickness of 6
mm, the expected hole diameter is 57 mm

During the 19. September
iIncident 273 MJ of energy
have been dissipated by
arcs. At least 5 kg of
stainless steel could have |
been melted, what justifies
the observed breaches in
helium and vacuum tubes.
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Above 90% of the arc energy is transferred

to pressurization of the vacuum space

§ M "
- UUR .'” e

E> 1/3 load on cold mass (and support post)
~23 kN
2 ~ 10 mm g s m-— 1 mm
p AN JUA .
1/3 load on barrier ’

I:> ~46 kN

B A
Ls

Total load on 1 jack ~70 kN
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Damage caused by the pressurization of
the vacuum space

Figure 14: Damage to interconnection QQBI.27R3 by excess compression
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Convective heat transfer in relieved

helium filled space

Heat transfer from Vacuum Vessel to
Vacuum helium — Qgae01

QRateOl — A\/v ) hOl ) (Tw _Tv)

Heat transfer from Aluminum Shield
to Vacuum helium — Qgien1 -
Tal

Qraes1 =2 Ay ho (T - T,) T,300K |

QRate21

Heat transfer from Vacuum helium to
Cold Mass helium — Qgae13

QRatelB = AAI ) hlS ) (Tv _Tc)

Cold Mass

T., T, — helium temperature in Cold Mass, Vacuum \ Al.. Shield

Ta, T,y —temperature of Vacuum Vessel, Aluminum Shield
A., Ay, A, — area of Cold Mass, Aluminum Shield, Vacuum Vessel Vacuum Vessel
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Model tuning - the only parameter to tune the model

was the natural convection heat transfer coefficient

Pcv=16bar
D —
——f=1.0 — f=1.2 — =10 —— f=1.5)——=1.8 —f=2(|
18 90
14 70
12 + Pressure in Q25 (measured) H 60 "
E Pressure in vac tank (calculated) E’ s :‘5
%10 — - &——Pressure in vac tank (measured) >0 2 ':j_ 5
% g | Temperature in Q25 (measured) | 40 E ; %
@ Temperature in vac tank (calculated) g— g g—
& 6t 32 0 &
4| {20
2 F 10
0 T T T T T T T T T T T T T 1 0 T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 0 20 40 60 80 100 120 140
Time (s) Time, s
Measured and calculated data for Evolution of the helium temperature and

080919 LHC failure pressure in Cold Mass
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Modelling of 19. Sept. 08 incident

Sequence of events

EEEEEEEEEEEEEEE

19. Sept. 08 Incident

Time Event

EEEEEEEEEEEE

VX > t=0 M3 pipe break, hole area:
g 2x32 cm?

I\ caused by
S Electrical arc at 1=8.7kA

e o t=5s Quench of 4 magnets for
= |=8.7kA

t=22s pipe break, hole area: 2x30
cm?
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Model validation: 19. Sept. 08 incident

modeling results vs. measured data

CERN data WUT calculations
18 90 18 180
Pressure in Vac Vessel
16 | 80 16 A — Pressure in Cold Mass 1 160
Temperature in Vac Vessel
14 170 14 Temperature in Cold Mass /—4‘1 140
ﬁqg | Pressure in Q25 (measured) 60 g _ 12 4 + 120 z
E 0 Pressure in vac tank (calculated) 50 o E )
by - - &- - Pressure in vac tank (measured) ] E 2,10 - + 100 5
S Temperature in Q25 (measured) o o T
» 8| 40 o S5 g 180 o
@ Temperature in vac tank (calculated) g— 3 g
o | e O
5 e £ 6] le0 §
|_
4 t 20 4 4 40
2+ 10 2 > 120
O T T T T T T T T T T T T T 1 0 0 -+--——F—T—T7"TT—"—TTTTTT T T—T—TT T 7T O
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 0 20 40 60 80 100 120 140

Time (s) Time [s]

Measured and calculated data
for the 19. Sept 08 incident Mode”ng results
(LHC Project Report 1168 )
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19. Sept. 08 incident - He mass flows

through the holes and SV: modeling results

19. Sept.08 incident OV valves — Holes —— SV valves
Time Event
35.0
t=0 M3 pipe break,
hole area: 2x32
cm?
Electrical arc at
|=8.7kA
t=5s Quench of 4
magnets for
|=8.7kA
t=22s  pipe break, hole

area: 2x30 cm?
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=

19. Sept. 08 incident - heat transfer

modeling results

q rate ——RateQuench ——qRateArc q rate ——Rate01 ——qRate1l3 —— qRate21
1.00E+07 7 E+06
1.00E+06 1 6.E+06 1
5.E+06 A
1.00E+05 A 4.E+06 -
3.E+06 A
1.00E+04 A 2.E+06 A
1.00E+03 1 1.E+06 1
0.E+00
1.00E+02 A -1.E+06 -
-2.E+06 -
1.00E+01 A _3.E406 A
'4.E+06 T T T T T T
1.00E+00 / T T T T
! QRatel3 time, s
T,,-300K / gRatey,; — heat transfer to Vacuum helium form Vacuum Vessel
\ QRate21 / gRate,;  —heat transfer to Vacuum helium form Aluminum Shield
[\ ~ — gRate;;  —heat transfer to Cold Mass helium from Vacuum helium
Cold Mass
QRate01 Al.. Shield

Vacuum Vessel
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Vacuum vessel safety valves (SV) schemes

Prior to
19.Sept. 08
incident SV

scheme

Final SV
scheme

h A

O 1/ It I I I I I 8 M A A R

Figure L3: Final SV scheme: 1 added DN200 SV on each dipole,
PRS. Discharge cross section: 4190 cm”

Temporary @V, 2
SV scheme

IhdEAANAANASIASNASNAS N

|1 B B4 B B B RAD I B A D4

Figure L4: Temporary SV scheme for cold sectors, using PRS: 2 DN90 SV, 13 DN100 SV,
* ™77~ =77 Discharge cross section: 1270 cm’
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Maximum Credible Incident analysis

TARGET 2T

.é._ S B w3
\ /

_l//
=
TR
1\
I/

ALIGNEMENT BLOCK

CLAMPS (18-24:

Sequence of events - comparison with 19. Sept. inc.

10 &0

; i mci? 19 Sept. 08 incident MCI
by \ \ Time Event Time Event
17 L] S \= t=0 M3 pipe break, t=0 Pipe break with total
ENE ™ /13 hole area: 2x32 cm? area of the holes: 6x32
& : NI, I caused by cm? =192 cm? but
N\ Electrical arc at Cold Ma§s 1;r0ee fZlow
1=8.7kA area 1s oucm
and
Quench of all (16)
t=>5s Quench of 4 magnets at 1=13.1kA
magnets for [=8.7kA
iR S : caused by
t=22s  pipe break, hoge Electrical arc at
VACULM VESSEL]| [ RADJATIVE GCREEN —-I area. 2X3O cm |=13.1kA
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Modeling results for MCI with SV scheme

prior to 19. Sept. 08 incident
—— QV valves —— Holes —— SV valves

|
0 20 40 60 80 100 120 140
time [s]

Helium mass flow thought holes, SV and QV valves
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Modeling results for MCI with SV scheme
prior to 19. Sept. 08 incident

cold mass helium ——pressure === temperature vacuum = pressure — temperature Alu
18.0 30 14.0 - 400
16.0 T _j | 25 12.0 | -4 350
14.0 4 14 300
0 PZ o100 =
— 12.0 4 | fr —
g o S + 250 =
2 5 = 80 <
o 10.0 4 = [} ' =]
= BT 5 1200 B
»n 80 o 60 - @
b o o ° ] o
% e 3 1150 &
= 6.0 <+ 10 — S
o () o i [t
= 4.0 1 100
4.0
T1° 2.0 -
2.0 : Y T 50
0.0 + T T T T T T T 0 0.0 4 T T T T T T 0
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140
time [s] .
time [s]

Evolution of helium pressure and temperature in Cold Mass (left) and Vacuum
Vessel (right) + evolution Al. Shield temperature (right)
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Modeling results for MCI with temporary SV

scheme

—— QV valves —— Holes —— SV valves

1 1 1 1 1 1
0 20 40 60 80 100 120 140
time [s]

Helium mass flow thought holes, SV and QV valves
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Modeling results for MCI with final SV

scheme

—— QV valves —— Holes —— SV valves

0 20 40 60 80 100 120 140
time [s]

Helium mass flow thought holes, SV and QV valves
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Simplified scheme of cryostated
cable-in-conduit coil - ITER

quench tank thermal shield

thermal shield vacuum space

vacuum vessel
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Simplified scheme of cryostated

cable-in-conduit coil - ITER
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Results of the numerical simulaction
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Results of the numerical simulaction
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Evolution of the helium mass flow rate through the safety Evolution of the helium mass flow rate through the hole
valve of the coil to the external gasbag after unsealing of the  in one cold channel to the vacuum space of the cryostat
coil housing during the fast energy discharge
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during the fast energy discharge unsealing of the coil housing during the fast energy discharge
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Test rig of a cryogenic system failure

acuum vessel

Relief valve

Thermal shield
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RLC circuit generating electric arc

Switching element, which is initiating

, _ Inductor slowing down
generation of the electric arc

the dl/dt ratio of current pulses

7
Capacitors battery charged by — o A0S
a high voltage supply to
a nominal voltage U,, —> (, ==TUO Rarc <
amount of the stored energy
ey
1 ., -
Ec, = E Up-C,
d2 d 1 Resistance of electric arc which depends on
L, e’ Rarca+c— =0 the value of the current flowing in the circuit
1
\l/ Warrlington formula
Energy from the electric arc a-L  gpn- cognstants
to the environment < Rarc(1)= " ’ ’

| — electric current,
Eore = Rore(9)- (1) *at L - arc length
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Results of nhumerical modelling of RLC

circuit generating electric arc

The curve of dispersed energy
IS approaching to 5kJ
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Waveform of the current pulse Changes of energy and heat flux
in the RLC circuit model from the electric arc to the environment

Values of passive elements:

C, =10mF
L, = 300uH
R, =500 mQ

Nominal initial value voltage of C;:
U, = 1kV
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To perform risk analysis of cryogenic systemit is necessary
to model heat and flow processes in the cold mass helium
and vacuum space.

A 0D with elements of 1D model enabled the reproduction of
the 19. September 2008 incident.

The model has been used to scale helium relief system in a
number of cases, including LHC and ITER.

Electrical arc has been modelled with RL circuit analogy.

A dedicated test rig enabling validation of heat transfer from
different sources including electrical arc is under
construction.



