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NASA’s Distributed Propulsion Aircraft 

National Aeronautics and Space Administration

www.nasa.gov

BENEFITS
Large core engines with low TSFC

drive superconducting generators.

Multiple motor-driven fans ingest

boundary layer & give high bypass

ratio for low fuel burn and emissions.

Fans fill in center body wake 

to reduce drag, fuel burn and 

emissions.

Electric power distribution to 

multiple fans is more efficient

and lighter than mechanical. Small diameter core engine inlets

are acoustically treatable.

Low velocity core exhaust

reduces noise. 

Electric power from generators

is distributed to multiple fans.

Forward and aft fan noise 

Is shielded by airframe.

High-speed core engines

have fewer turbine stages

than direct fan-drive cores.

THE TURBOELECTRIC APPROACH CONTRIBUTES TO EVERY CORNER OF THE SFW TRADE SPACE

Upper surface suction increases lift 

coefficient at TO & delays separation.
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• LH2 can be used to cool-down superconducting components and power converters 

• Network dynamic simulation is used to determine the requirements of energy 
storage devices and reconfiguration 

Distributed Propulsion – LH2 Cooling Network 

LH2 tank
LH2

LH2

Gaseous H2Gaseous H2

DC Power Bus

Motors

DC/AC Power converters

Energy Storage

AC/DC Power converters

Turboprop
Generator

Turboshaft 
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• Develop a high fidelity sizing tool for fully superconducting 
rotating machines.  
– Accurate 3D geometry represented 

• Electromagnetics, mechanical and  
thermal 

– Portable code in Python and C 

 

• Develop model for quench propagation 
– Address detection and protection 

 

• Develop new model for AC losses 
for superconducting stators 
– Based on FEA simulations 

 

• Validate AC losses model experimentally 

 
 

Project Objectives 
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• Electromagnetic model 

– Geometry accurately represented 

– No mesh in air 

– Based on integral methods (GFUN – Biot Savart) 

 

Sizing Model “Amber” Version 0.9 

• Mechanical model 

– Geometry accurately represented 

– Steel and composite materials 

– Thermal and force induced stress 

 

• Thermal model 

– Total cryogenic heat load and temperature distribution 
estimated using finite differences 

– Cryogenic system based on LH2 or Ghe and Reversed Turbo-
Brayton cryocoolers 

 

 

• Zeroth order analytical sizing model (2D) used 
for preliminary optimization 
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6 

Winding Geometry 

Symmetry planes Simulations 

performed on 1/4th of 

the geometry 

Backiron 

Stator winding 

Rotor winding 

• First step focuses on quench in the rotor winding 
• Objective is to evaluate the impact of quench protection on the machine 

design 
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Quench in Superconductors 
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Quench model 

Model 
 
 

Conductor  

topology/materials 

Winding geometry 

NZPV 

MQE 

Peak temperature   

versus τdischarge 

NZPV: Normal zone propagation velocity 

MQE: Minimum quench energy 

τdischarge : time constant of the discharge 

 

Detection parameters (Voltage) 

Protection parameters (τdischarge ) 

YBCO Tapes 

MgB2 conductors 
Cu 

Hastelloy 

Cu 

YBCO 
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YBCO Tape Configuration 

2 mm Ag 

20mm Cu 

20mm Cu 

50mm Nickel Hastelloy substrate 

1 mm YBCO - HTS (epitaxial) 

~ 50 nm Buffer 
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Kapton Insulation 
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• Anisotropic model 

• Infinite transversal equivalent resistivity (insulator) 

– Resistivity on x-axis 

– Infinite resistivity on y-axis and z axis (Use of Katpon) 

Electrical Properties 
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• Need to consider field distribution and temperature gradient 
in winding for YBCO equivalent resistivity  

Flux and Temperature Distribution in Superconducting 

Machine 
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YBCO Layer Critical Current  

Jc data from SuperPower – 2G HTS Tape w/ Advanced Pinning 

   YBCO  Jc(B,T) Scaling Law 
 

                       𝐽𝑐 𝐵, 𝑇 =
𝐶0

𝐵
∙ 𝐵𝑖𝑟𝑟 𝑇

𝑚 ∙
𝐵

𝐵𝑖𝑟𝑟 𝑇

𝑝
∙ 1 −

𝐵

𝐵𝑖𝑟𝑟 𝑇

𝑞
A/m2 

 

                      with 𝐵𝑖𝑟𝑟 𝑇 = 𝐵𝑖𝑟𝑟0 ∙ 1 −
𝑇

𝑇𝑐

𝜆
   𝑇 

 

                      and         𝜌𝑠𝑐 =
𝐸𝑐

𝐽𝑐(𝐵,𝑇)
∙
𝐽

𝐽𝑐 𝐵,𝑇

𝑛−1
Ω.𝑚 

 

  

 

 

YBCO 
T<50K 

YBCO 
T≥50K 

Tc(K) 92 92 

p 0.95 0.73 

q 2.568 1.69 

m 1.98 1.98 

λ 1.98 1.54 
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YBCO Jc Dependence on Field Direction 

Incidence magnetic field 

Bi θ 

y-axis  

𝐽𝑐 𝜃 = 𝐽𝑐 90° . (𝐴. (cos 𝜃
2 + 𝛾−2. sin 𝜃 2)−

1
2+𝐵. (cos 𝜃 2 + 𝛽−2. sin 𝜃 2)−

1
2) 

Anisotropic critical current, magnetic field dependency 

  

Jc: Critical current density (A/m2) 

Bi: Incidence magnetic field (T) 

Fit values for 0% Zr doping 

A=5.97  γ=7 

B=21.39  β=0.438 

J 

Percentage of improved pinning by Zr in YBCO tape 
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• Example of electrical resistivity of material and coil for J/Jc = 0.6, no field 

Electrical Equivalent Properties 
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Equivalent Thermal Properties 
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Thermal conductivities 
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• Heat capacity: 

Equivalent Heat Capacity 

0 50 100 150 200 250 300 350
-100

0

100

200

300

400

500

600

700

800

900

Temperature(K)

H
e
a
t 

C
a
p
a
c
it
y
(J

/K
g
/K

)

 

 

Copper

Silver

Kapton

YBCO

Nickel

Coil Equivalent

𝐶𝑒𝑞 =
 𝑚. 𝐶

 𝑚
 

Ceq: equivalent heat capacity (J/Kg/K) 

C: heat capacity of layers (K/Kg/K) 

m: mass of layers (Kg) 
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COMSOL Computational Model 

Input 

Geometry 
Operation current 

Compute magnetic flux 
density  

Compute equivalent properties ρeq, 
keq, Ceq , Qj at magnetic field and 

Temperatures 

Affect equivalent properties ρeq, keq, 
Ceq to the windings 

Solve 

𝛻 ∙ 𝑘 𝛻𝑇 + 𝑄𝐽 = 𝐶𝑒𝑞
𝑑𝑇

𝑑𝑡
 

for small time step 

Use temperature distribution 

• Parameterized model implemented 

in COMSOL 

• Winding properties are calculated 

in COMSOL 
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Magnetic Flux Density Distribution 
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 𝑄𝐽  =
1

𝑉𝑖
 𝐸 𝑡 . 𝐽 𝑡 𝑑𝑣 =
𝑉𝑖

𝐽𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔
2

𝜎𝑐𝑜𝑖𝑙(𝑇, 𝐵)
 

Coil heat source 

Joule losses versus temperature at constant magnetic field (1T) 

Superconducting state 

With: 

  - Joperating: operating current density (A/m2) 

  - σcoil: equivalent conductivity of the coil (S/m) 

  - Pj: Joule losses in the coil (W/m3) 

  - Vi: specific volume (m3) 
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• Cooling from inner pole surface (heat exchange coefficient) 

• Joule losses in the winding as Heat source  

Thermal model 

Heat pulse 

Heat source: 

 - Rectangle pulse 

 - Start time: 0.1s  

 - Duration 220 ms 

 - Value ≈ 5 W at 77K 

t(s) 
 0.1                     0.32 

Power (W) 

        

               5 

 

 

                0 
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Example of Quench Simulation at 77 K  
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Normal Zone Propagation Velocity 

Quench Propagation velocity (x-axis)  

  

𝑉𝑄𝑃𝑉𝑥 =
𝑥

∆𝑡
 

Getting value during 

post processing 
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Quench detection 

Voltage probe 

    if V< Vthreshold 

        then 0 

    else 

        then 1 

Integration  

of the voltage 

probe 

t(s) 

Voltage  

during detection 

Voltage probe 

t1 t1+ε 

Step to trigger 

coil discharge 

t(s) 

a 

a 

1 

Total heat source 

time exponential  

decrease: 

exp (−
(𝑡 − 𝑡6)

𝜏𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
) 

With 𝜏𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 =
𝐿

𝑅
 the discharge time constant 

L the inductance of the winding, R: the dump resistance 

And 𝑡6 =  𝑡2 < 1 𝑑𝑡 

t(s) τdischarge 

t6 

t2 
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Example of Quench Simulations 

• Voltage detection 

• Threshold: 400 mV 

• Current discharge time constant: 0.5 s 

Pulse of heat induces quench in winding 

Top: 50 K 

I/Ic=0.7 

* 
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Minimum Quench Energy 
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Temperature Profiles for Different Discharge  
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Impact of Detection Threshold on Peak Temp. 
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Impact of I/Ic on the Discharge Time Constant 
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Peak Temperature vs. Je 
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Influence of Copper Content on Coil Performance 
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Influence of Copper Content on Coil Performance (40K) 
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• Parameterized model developed for YBCO 

– Quench behavior can be estimated from 

• Materials composing winding 

• Jc(B,T) characteristic of the superconductor 

• Voltage detection threshold 

• Discharge time constant 

• Python code is being generated based on simulation results and will be 
implemented in Amber 
• Quench protection will be used as additional constrains for the machine design 

 

• More data needs to be generated to extract response surface 

• Need coupling with external electric circuit model  
• magnetic coupling, quench back 

 

• Development of an in house flexible tool independent from FEA 
commercial packages is being considered 

 

 

 

Summary and Perspectives 


