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Large core engines with low TSFC
drive superconducting generators.
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Electric power from generators
/ is distributed to muItlpIe fans.

Fans fill in center body wake
to reduce drag, fuel burn and
emissions

Multiple motor-driven fans ingest
boundary layer & give high bypass
ratio for low fuel burn and emissions.
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THE TURBOELECTRIC APPROACH CONTRIBUTES TO EVERY CORNER OF THE SFW TRADE SPACE
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Distributed Propulsion — LH2 Cooling Network HOUSTON

LH2 can be used to cool-down superconducting components and power converters

Network dynamic simulation is used to determine the requirements of energy
storage devices and reconfiguration

AC/DC Power converters DC/AC Power converters
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Project Objectives HOUSTON
* Develop a high fidelity sizing tool for fully superconducting
rotating machines. Design requirements
— Accurate 3D geometry represented Design
* Electromagnetics, mechanical and Constraints
thermal High Fidelity Analytical
Material = Sizing Model I

— Portable code in Python and C

Constraints

Design meets requirements ——

* Develop model for quench propagation

— Address detection and protection

* Develop new model for AC losses
for superconducting stators

— Based on FEA simulations

e Validate AC losses model experimentally
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Sizing Model “Amber” Version 0.9 UNIVERSITY of

HOUSTON
h

e Zeroth order analytical sizing model (2D) used
for preliminary optimization

Electromagnetic model

0.018

— Geometry accurately represented
| — No mesh in air
— Based on integral methods (GFUN — Biot Savart)

Ferro-fluidic seal  Stator winding

*  Mechanical model

-

— Geometry accurately represented

— Steel and composite materials
— Thermal and force induced stress

Metal (S5, AL...) Composil;-"ccramlc Cooling channels
(low K)

e Thermal model Besrings

— Total cryogenic heat load and temperature distribution
estimated using finite differences

— Cryogenic system based on LH2 or Ghe and Reversed Turbo-
Brayton cryocoolers
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Winding Geometry HOUSTON
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* First step focuses on quench in the rotor winding

* Objective is to evaluate the impact of quench protection on the machine
design

e . Backiron \
Rotor winding ~_I
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Stator winding
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Quench in Superconductors HOUSTON
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A quench is an electro-thermal instability v v

Stabilizer
Localized energy input (disturbance),
e.g., low Jc area, heat input, etc. SuPercondUCtor
+AQ i
v
Hot-spot AT Jc
localized temperature rise >
Jo Tc>T>Tcs
A Current sharing Normal Zone
Quench
+AQ positive feedback loop
+AJcu
Q = Joule Heating - Cooling —
: To Tcs Tc T

“AQ
\ 4
-AQ=>-AT=>-Adcu

Minimum Quench Energy (MQE)

Normal Zone Propagation Velocity

Recovery loop (NZPV)

<
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Quench model HOUSTON
Conductor == NZFV
topology/materials 7 MQE
Winding geometry Peak temperature

VEISus 1:discharge

Detection parameters (\Voltage)
Protection parameters (Tgischarge )

BCO Tapes

MgB2 conductors

YBCO —»— U
Hastelloy \> -~ o
; - | i | —
: T )

NZPV: Normal zone propagation velocity
MQE: Minimum quench energy

Taischarge - tIMe constant of the discharge
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YBCO Tape Configuration HOUSTON

i) 50pm Hastelloy |

v A

A
<
< 0.1 mm

20um Cu

Kapton Insulation 2 pm Ag
l 1 um YBCO - HTS (epitaxial)
P —_—_ ﬁ 50 nm Buffer 20um Cu
o et i T p 3y My f
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Electrical Properties hNSGESfBN
h

* Anisotropic model
* Infinite transversal equivalent resistivity (insulator)

— Resistivity on x-axis
— Infinite resistivity on y-axis and z axis (Use of Katpon)

J\/\/\/\/_ Rkapton
= AWM e
A4 J\/\/\/\/’ Rsilver
(&)
Silver ] S
(%2}
YBCO @ J\/\/\/\/_ Ryeco
Nickel J\/VW R
buffer
J\/\/\/\/_ Ruickel
R
Current _/\/\/\/\/_ kapton
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Flux and Temperature Distribution In Superconducting UNIVERSITY of

Machine HOUSTON

t(10)=1.570796 Surface: Magnetic flux density norm (T) Arrow Surface: Magnetic flux density
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* Need to consider field distribution and temperature gradient
in winding for YBCO equivalent resistivity
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YBCO Layer Critical Current HOUSTON
w

% O () (1)
S — YBCO Je(B,T) = B Birr(T) Birr(T) 1 Birr(T) Am
T<50K T250K
. T\2
Te(K) 92 92 with Bir(T) = Bipro (1 - T—c) T
p 0.95 0.73 E j n-1
and Pse = ——+ Q.m
Je(BT) Jc(BT)
q 2.568 1.69
2.5E+09
m 1.98 1.98 , @ exp-77k
¢ o, e M exp-60K
2E+09 @
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Jc data from SuperPower — 2G HTS Tape w/ Advanced Pinning
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YBCO Jc Dependence on Field Direction HOUSTON
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Anisotropic critical current, magnetic field dependency

Percentage of improved pinning by Zr in YBCO tape

Incidence magnetic field
y-axis 5

Bi@
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Critical current (A/12 mm)

20
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Angle between field & tape normal (°)

1.(8) = J.(90°). (A. (cos(6)? + y~2.sin(8)) 2+B. (cos(6)? + 2. sin(8)?)"2)

J.. Critical current density (A/m?) Fit values for 0% Zr doping
B:: Incidence magnetic field (T) A=5.97 v="7
B=21.39 =0.438
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Electrical Equivalent Properties HOUSTON
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* Example of electrical resistivity of material and coil for J/Jc = 0.6, no field

1/n(T,B)
o E J
YBCO — B B
JcO(Q’T)‘B‘_l_OB JCQ(Q,T)‘B‘:B
0 0
f le-s
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Temperature(K)
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Equivalent Thermal Properties HOUSTON
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Thermal conductivities
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Equivalent Heat Capacity HOUSTON
L

* Heat capacity:
Ceq- €quivalent heat capacity (J/Kg/K)

o _xmC C: heat capacity of layers (K/Kg/K)
“TYm m: mass of layers (Kg)
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COMSOL Computational Model ‘I’_INC')VGRSS_ILBN

n

|nIi>Ut » Parameterized model implemented
Geometry in COMSOL
Operat'T current « Winding properties are calculated
Compute magnetic flux in COMSOL
density
J

Compute equivalent properties Peqr
keqr Ceq » Q;at magnetic field and
Temperatures

v

Affect equivalent properties p.g, keq, Use temperature distribution
Ceq to the windings

Solve
dT
l7-kl7T+Q]=Cqu

for small time step
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Magnetic Flux Density Distribution HOUSTON

n

Multislice: Magnetic flux density norm (T) Arrow Volume: Magnetic flux density
Arrow Volume: Current density
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Coil heat source HOUSTON
e | —

1 ]operating ? With: ] _
Q; = A E@®).J(t)dv = (T B - Joperating: OPErating current density (A/m?)
LIV 0coit (T, B) - Ojj- equivalent conductivity of the coil (S/m)
- P;: Joule losses in the coil (W/m?3)
" Vi specific volume (m?)
Superconducting state |

Joule losses versus temperature at constant magnetic field (1T)
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Thermal model HOUSTON

__/“

e Cooling from inner pole surface (heat exchange coefficient)

* Joule losses in the winding as Heat source

‘| Heat source:
- Rectangle pulse

i - Start time: 0.1s

| - Duration 220 ms

I - Value = 5 W at 77K
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Example of Quench Simulation at 77 K
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maximal temperature versus time
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Normal Zone Propagation Velocity HOUSTON
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Total heat source (W/m?) X-axis e

x10 ' r = - ' T T
— 0.5 .
Ll —1
—e Quench Propagation
0.9 k 25
— 3s
0.8
o 0.7 b
[
z
@ 0.6
¢ | Quench Propagation velocity (x-axis) J |
2 Getting value during 1 o
5 o4t v X <— post processing . / S/
QPVx — .
0.3 F At
X
0.2 | <
0.1}
0 e 1 1 1 L L ' 1 1 1 L =
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Quench detection HOUSTON
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Voltage probe Total heat source
if V<V ' : ; :
" (t)hreshold Lr;tfr?gc’:\l/té?{la : Step to trigger time expf)nentlal
g coil discharge decrease:
else probe exp(— (L2t
then 1 Tdischarge

\oltage probe

\oltage
during detection

t1 i(s) tl+e t(s) a ts
Tdischarge 1)

: L : :
WIth Tgischarge = - the discharge time constant

L the inductance of the winding, R: the dump resistance
And t, = [(t, < 1)dt
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Example of Quench Simulations HOUSTON
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« \oltage detectigr . §' o |
o Thl‘eShO| Dmnf;resis!ori

« Current discharge time consta@mv‘,‘,r " x ;

\ |

supply

Superconducting
L : coil
1

Vo>,

Potentio

1
!
!
1
I
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1 .
r,Resistance of
_ 'mormal zone

Cryogenic area

\,, Top: 50 K

—e—Temperature Voltage I/IC:O 7
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; - 04
250 . L
g Y 0.35
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2 200 ; )
E f \\ - 0.25 g
: f f 02 £
g 150 3 ~. 3
: / T o
9
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Pulse of heat induces quench in winding
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Minimum Quench Energy HOUSTON
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Minimum Quench Energy (MQE) versus operating

temperature
1200
1000 f\?\ == — B
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Temperature Profiles for Different Discharge t HOUSTON

_/tu

Peak temperature in the winding with different
discharge time constant

g 270 .
whd
© 220 R
o
g 170 ::__;.eet:;,\, > v 9 y
P _ o> 4
X 120 —
g_J 70

0 2 4 6 8 10

time(s)
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Impact of Detection Threshold on Peak Temp. HOUSTON
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a |
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A~ ¥ .
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Impact of I/lc on the Discharge Time Constant HOUSTON
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0 .
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Operating temperature(K)
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Peak Temperature vs. Je HOUSTON
L

350
325
300
¥ 275
E /// —=30 K
g 225 g 40 K
E / =
& 200 / ——50 K
=z
§ 175 =60 K
150 70 K
100

25.00 50.00 75.00 100.00 125.00 150.00 175.00 200.00 225.00
Winding engineering current density (A/mm?)
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Influence of Copper Content on Coil Performance HOUSTON
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Highest admissible engineering current density (peak temperature at
300 K) versus operating temperature
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Influence of Copper Content on Coil Performance (40K) HOUSTON

n
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o
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Engineering current density (A/mm?2)

¢

0 20 40 60 80 100 120 140 160 180 200
Copper layer thickness (um)

15 um copper layer thickness leads to the highest engineering. current density in
the winding
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e Parameterized model developed for YBCO
— Quench behavior can be estimated from

* Materials composing winding
* Jc(B,T) characteristic of the superconductor
» Voltage detection threshold
e Discharge time constant
* Python code is being generated based on simulation results and will be
implemented in Amber
* Quench protection will be used as additional constrains for the machine design

 More data needs to be generated to extract response surface
* Need coupling with external electric circuit model

* magnetic coupling, quench back

* Development of an in house flexible tool independent from FEA
commercial packages is being considered
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