Hot-Spot Temperature Experiment

Chats Workshop 10th October 2013

Kamil Sedlak, Pierluigi Bruzzone

EPFL-CRPP, Villigen, Switzerland

Motivation for the Hot-Spot Experiment

- A new superconducting cables are being designed for the (EFDA) DEMO fusion reactor (tokamak).
- The "react and wind" option could look like this:

- Important for hot-spot temperature during a "quench":
 - Current decay time during fast discharge τ = 23 s.
 - Massive stainless steel conduit.
- → Steel can certainly absorb a big fraction of heat during a fast safety discharge. How much?

Motivation for the Hot-Spot Experiment

- The Hot-Spot experiment should
 - become a bench mark experiment for validation of simulation tools used for DEMO cable assessment.
 - give us some basic parameters, e.g. heat transfer coefficient (h_{He-steel}) between helium and steel.

k_{steel} ... heat conductivity (known and tabulated as function of T for different kinds of steel).

h_{He-steel} ... heat transfer coefficient on the boundary – unknown at high (~100 K) temperatures

Experimental Setup

- Quench should be initiated in a damaged location in the centre of the cable.
- Goal: Achieve hot-spot temperature > 100 K.

Experimental Setup

Short-Circuit after Jacket Removal

Heating Cable Locally to 400°C

Damaged Cable and Thick Steel Conduit

Temperature Sensors

Experiment - First trial

- Temperature rise controlled by a heater located before He inlet.
- Quench initiated not in the required central region, but at the edges (near current lead terminals)
- T1, T2 sensors in He.
- T9, T10 sensors on the insulation surface.
- (Raw signals, temperature offsets are not corrected.)

Experiment – First trial

CONCLUSIONS - Plans for Improvement

■ To avoid quench initialization at the edges, we intend to modify the cooling circuit (to cool down the edges of the short-circuit cable by 4.5 K helium).

and

Add a small NbTi coil (~1-2 T) around the centre of the short-circuit to initiate the quench in the damaged NbTi region at lower temperature.

→ REPEAT THE EXPERIMENT

