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Introduction 

Understanding critical current degradation of Nb3Sn superconducting  strands under 
transverse (Lorentz) compression is necessary for large magnet application 
 
Due to the experiment cost of full size cable, experiments on sub-sized cable or single 
strand are conducted but generally experiments are challenging due to the small diameter 
of the strands (~ 1 mm).  
 
We developed a method to estimate the critical current behavior under transverse load 
based on Finite Element Analysis (FEA) and an available tensile scaling law. 
 
A successful method would allow a platform for the optimization of the strand design and 
for the prediction of the behavior of a cable without costly experiments. 



Methodology 
 Two steps to calculate the critical current (Ic) degradation 

 
• FEA is based on the experiments at University of Geneva. 
 
 
 
 
 
 
 
• Calculate Ic degradation based on 

1) Strain of the Nb3Sn filaments from FEA 
2) An available scaling law. 

 
• Comparison between the calculated results and the experiment 

results. 
 
 
 



Methodology 
Finite element analysis 

 

FEA procedure in ANSYS® 
 

1. Solid geometry modeling 
2. Meshing (Finite element model) 
3. Boundary conditions and Loading 
4. Material properties 
5. Solution 
6. Post-Processing 



Solid geometry modeling: 
 

Quarter model: 

Follow “bottom-up” procedure: Key points -> Lines -> Areas 

Materials: Copper(bronze), Nb3Sn, and Epoxy 

 

 

 

 

 

 

 

 

PIT288 with 4W condition PIT288 with 4W+Epoxy condition 



Meshing 
Strand mesh 

Element type: PLANE183 with plane strain option 

Division on the lines to control the size and shape of elements. 

 

 

 

 
 

 

 

 

 



plate 

wall 

strand 

Contact pairs  include contact element CONTA172 and Target element TARGE169 

Two contact pairs are used for the contact 
between:  
1 “plate and strand” 
2 “wall and strand” 

Plate and wall are modeled as rigid bodies (no deformation) with TARGE169.  
 
Pilot nodes are generated by an option of  TARGE169. Pilot motion represents the motion 
of whole body. 
 
The load and boundary conditions are applied on the wall and the plate via pilot nodes. 
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Symmetry condition 

Boundary conditions and loading 

Loading direction Plate: x-direction Plate: y-direction Wall: x-direction Wall: y-direction 

Vertical loading Fixed 
4wall: -0.07 mm 

4wall+epoxy: -120 N/mm 
Fixed Unknown 

Horizontal 

loading 
Unknown Fixed 

4wall: -0.07 mm 

4wall+epoxy: -120 N/mm 
Fixed 

Boundary conditions (except symmetry conditions) and loads. 

Because of the twisting of the 
filaments, configurations of strand 
cross section are different at 
different axial positions.  
 
We apply the loads in vertical and 
horizontal directions to take into 
consideration  twisting. 
 



 

Symmetry boundary condition 

Horizontal loading 
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Material properties 
1. Copper/Bronze 
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Bi-linear form, parameters: Young’s modulus, Yield stress, and Plastic tangent modulus (H). 

Copper behaves as a plastic material 
after cool-down. In the simulation, 
we ignore the elastic region of the 
stress-strain curve by setting yield 
stress = 1 MPa. 
 
Good agreement on displacement 
curves as function of applied force 
for available experimental data [19] 
was obtained for H=1300 MPa [20]. 

 

2. Nb3Sn: Elastic material: E = 50~100 GPa in literatures at 4 K. 

3. Epoxy: Elastic material: E is estimated as 9 GPa at 4 K.  

 
 



Solution 
The simulation is a non-linear problem ( including contact behavior, large deformation and 
elasto-plastic material property). 
 
The load is applied by multiple load steps to avoid convergence problem. 

 
Post-processing 
We output 
1. 1st, 2nd , and 3rd principle strains of all Nb3Sn filament elements. 
2. Filament area  of all Nb3Sn filament elements. 
3. Compression force. 

 
 



 

Load step: 110 

Output files 



Methodology 
Calculation based on a scaling law 

A scaling law developed by B. Bordini et al [17] is used to calculate the critical current 
degradation. The calculation procedure is listed as follow: 
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 step
 

1


6
  

Final result, step 7 

We use the minimum value of Ri from vertical loading 
and from horizontal loading to estimate the smallest 
critical current. 



Results and discussion 
Parametric study of the effects of: 

•Tangent modulus of Copper (bronze), range from 600 to 2000 MPa; 
•Young’s modulus of Nb3Sn, range from 20 to 110 GPa; 

 
Based on PIT192_4W simulation 
 
X-axis: Compression force per unit axial length / Radius of the quarter FE model. 
Y-axis: Ic/Ic0 of the whole strand 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conclusion: Ic/Ic0 is sensitive to Young’s modulus of Nb3Sn. 
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Summary 
PIT192 and PIT288 Ic degradation 

Calculation  vs Experiment 

4W 4W+Epoxy 

Vertical << 

Horizontal << 

Combined      (<)        (>) 

•  Nb3Sn Young’s modulus of 65 GPa seems appropriate for this work. The same value was used 
successfully in previous studies [10]. 
 
•  4W+Epoxy results of vertical/horizontal loading agreed with the experiment very well. The combined 
result overestimates the Ic degradation. 
 
•  4W results of vertical/horizontal loading showed smaller degradation than the experiment. The 
combined results (largest strain configuration) is also smaller than the experiment. This may be caused 
by the uncertainties of the real loading condition in the 4W experiment (strand is not supported as well 
as in 4W+epoxy. This might cause more filament damages, lower Ic.) 
 
•  Limitation of methodology: residual compressive strain of the filaments and current sharing between 
the filaments are not considered. 



Conclusion 
  Ic degradation is sensitive to Young’s modulus of Nb3Sn. Transverse stiffness of the strand is 

determined by the plastic tangent modulus of copper. 
 
 More accurate Young’s modulus of Nb3Sn measurements at 4 K are necessary in the future. 
 More accurate measurements for annealed copper under transverse load to study the 

compression displacement as a function of compression force are necessary. 
 

 Preliminary results obtained by the new method are compared with experiments. 
 
 Good agreement is obtained when strand is positioned in the holder filled with epoxy. 
 Simulation showed smaller degradation in 4W cases. 

 
 The Nb3Sn material property used in this work is consistent with that in a previous Internal-tin 

triplet strand calculation, which indicates that this method may be used for different types of 
strands. 
 

 This method can serve as a platform for optimization of the strand as geometry parameters are 
easily adjustable in model (sub-element spacing, shape of the sub-element and the size of the 
strand) 
 

 This method may be used for critical current calculation of higher stages of cable.  
 

 More experiments are needed to verify the use of this methodology  
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