

TRANSVERSE HEAT TRANSFER COEFFICIENT IN THE ITER TF CICCs Part II. Analysis of transient temperature responses observed during heat slug propagation tests

Monika LEWANDOWSKA¹, Robert HERZOG², Leszek MALINOWSKI¹

(1) West Pomeranian University of Technology, Szczecin, Poland(2) was EPFL-CRPP, Villigen PSI, Switzerland

CHATS-AS, Cambridge, 9-11 Oct. 2013

Outline

- Motivation
- Experimental setup and conductor characteristics
- Evaluation of the heat transfer coefficient
 - Method proposed in [1] and its modifications
 - Method proposed in [2]
- Results
- Summary and conclusions

[1] Bottura L, Bruzzone P, Marinucci C, Stepanov B. Cryogenics 2006; 46: 597–605
[2] Renard B, Martinez A, Duchateau J-L, Tadrist L. Cryogenics 2006; 46: 530–40.

Motivation (I)

Central

channel (C)

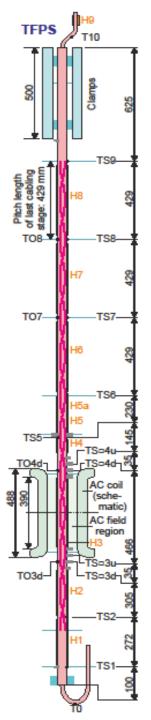
3

- The simple "meso-scale" representation of a CICC with a central channel is a 1-D dual channel model, which requires constitutive relations, i.e. friction factors f_B and f_C , and transverse heat transfer coefficient h_{BC} .
- Reliable predictive correlation for h_{BC} does not exist.
- The results of theoretical efforts ^[3-5] are neither comprehensive nor free of contradictions.
- The database of h_{BC} data obtained by interpretation of experimental data using simple models ^[1,2,6,7] is very modest.
- [3] Long AE. M. Sc. Thesis, MIT, Cambridge-MA, 1995.
- [4] Nicollet S, Ciazynski D, et al. Proceedings of ICEC 20, Beijing, China, 2005, 589-92.
- [5] Zanino R, Giors S, Savoldi Richard L. Cryogenics 2010; 50: 158-166.
- [6] Renard B, Duchateau J-L, Rousset B, Tadrist L. Cryogenics 2006; 46: 629–42.
- [7] Marinucci C, Bottura L, Bruzzone P, Stepanov B. Cryogenics 2007; 47: 563-76.

Motivation (II)

- Two thermal-hydraulic test campaings of two full-size ITER TF conductors were carried out in SULTAN at EPFL-CRPP in 2008 and 2009 ^[8,9].
- Unique instrumentation was used:
 - Iarge number of thermometers and heaters,
 - 'intrusive' instrumentation mounted inside the cable space.
- Main goal of these experiments was to study the occurence of the flow reversal effect, but ...
 Why not to use the collected data for other analyses?

A systematic investigation of h_{BC} in the ITER TF CICCs can be performed using different approaches ^[1,2,6].


- [8] Herzog R, Lewandowska M, Bagnasco et al. IEEE Trans Appl Supercond 2009; 19: 1488-91.
- [9] Herzog R, Lewandowska M, Calvi M, Bessette D. J Phys: Conf Ser 2010; 234: 032022 (8 pp)

Motivation (III)

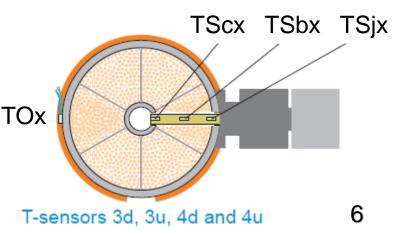
- In Part I^[10] we derived h_{BC} values using method based on analysis of steady state temperature profiles along the sample resulting from the local annular heating ^[6].
- In the present study the results of the heat slug propagation tests will be interpreted using two different approaches proposed in [1] and [2].

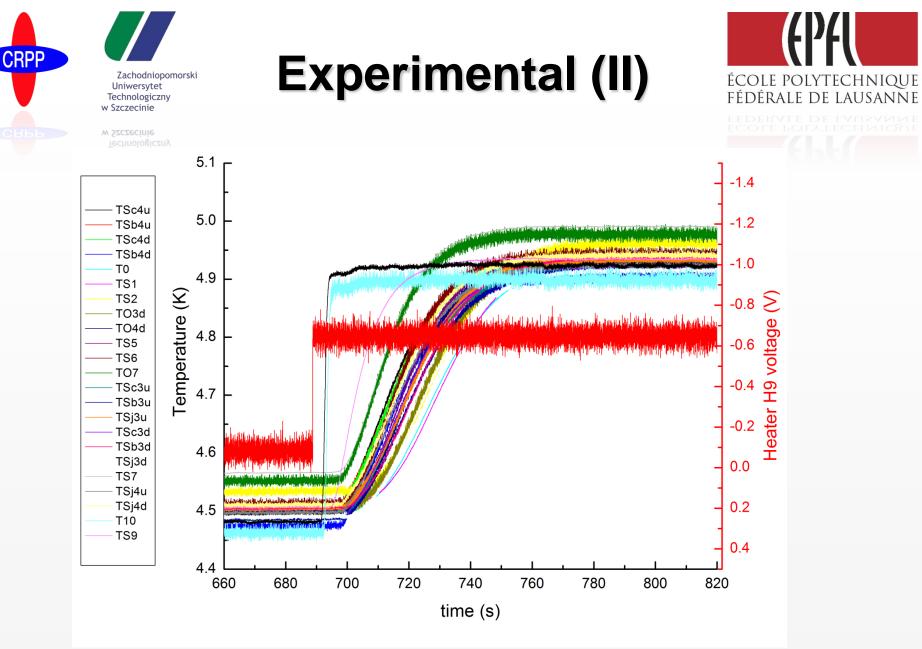
EXPERIMENTAL (I) ^[9]

CONDUCTOR:

ALSTOM B TF Performance Sample (TFPS)

Conductor parameter (unit)	Symbol	Value
Central spiral diameter (mm)	D _{in} /D _{out}	8/10
Spiral gap fraction (-)	perf	0.30
Bundle He cross section (mm ²)	A_B	384.8
Central channel He cross section (mm ²)	A _C	58.7
Bundle /channel wetted perimeter (mm)	p_{BC}	28.3




Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

$$A_{C} = \pi [(1 - perf)D_{in}^{2} + perfD_{out}^{2}]/4$$
^[2]

TEST CONDITIONS:

- Supercritical He at 4.5 K and 10 bar
- downward flow direction
- $\dot{m} = 4$ to 10 g/s
- 4 consecutive pulses
 of 0.45 K were generated
 by heater H9 at each mass
 flow rate

Typical example of raw data set

Mathematical model (I)

$$\begin{cases} m_{C}C_{p}\frac{\partial T_{C}}{\partial t} + \rho C_{p}v_{C}\frac{\partial T_{C}}{\partial x} = \frac{p_{BC}h_{BC}}{A_{C}}(T_{B} - T_{C})\\ m_{B}C_{p}\frac{\partial T_{B}}{\partial t} + \rho C_{p}v_{B}\frac{\partial T_{B}}{\partial t} = \frac{p_{BC}h_{BC}}{A_{B}}(T_{C} - T_{B})\\ \hline \frac{\partial T}{\partial t} + v\frac{\partial T}{\partial x} - k\frac{\partial^{2}T}{\partial x^{2}} = 0 \end{cases}$$

Where:

CRPP

Zachodniopomorski

Uniwersytet

Technologiczny w Szczecinie

 $T(x,t) = [T_C(x,t) + T_B(x,t)]/2$ - average temperature field in a CICC

$$v = \frac{A_C v_C + A_B v_B}{A_C + A_B} \quad \text{- average flow velocity}$$
$$k = \frac{A_C^2 A_B^2}{(A_C + A_B)^3} \left(\frac{\rho C_p}{p_{BC} h_{BC}}\right) (v_C - v_B)^2 \quad \text{- diffusion coefficient}$$

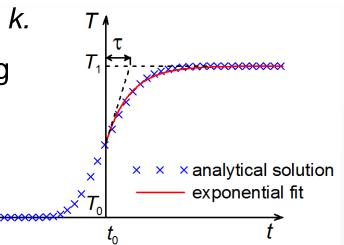
Wethod proposed in [1]
Mathematical model (II)
Mathematical model (II)
Mathematical model (II)

$$\int COLE POLYTECHNOUP
ECOLE POLYTECHNOUP
EC$$

The analytical solution could be matched to temperature response of *T*-sensors $\rightarrow k$ In practice it is impossible to obtain in this way reproducible results for all *T*-sensors

Mathematical model (III)

- The characteristic time constant τ of the temperature rise at half height is a useful tool to determine k. τ₁
- Time constant τ is defined by matching an exponential model:

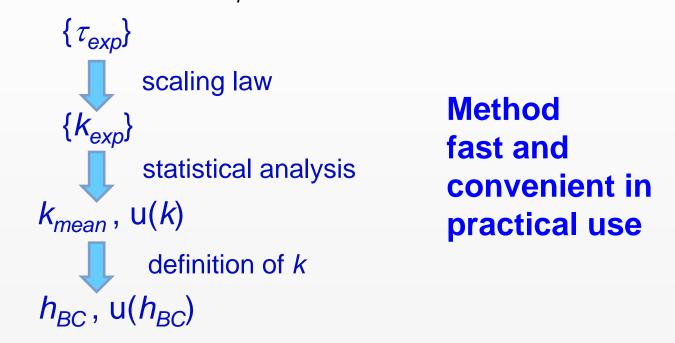

$$T(t,t_0) = T_1 - \left(\frac{T_1 - T_0}{2}\right) \exp\left(\frac{t_0 - t}{\tau}\right)$$

to the analytical solution,

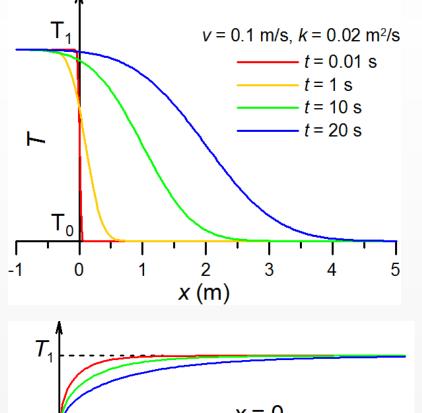
 t_0 is the time in which the temperature at the location of observation x reaches the value $(T_0+T_1)/2$.

 By repeating matching at various values of k, v and x the scaling law for τ was obtained in [1]:

$$\tau \approx \sqrt{\pi} \sqrt{\frac{kx}{v^3}}$$



Method of h_{BC} evaluation



By fitting the exponential model to the temperature responses of thermometers located along the sample, a set of experimental values of the characteristic time $\{\tau_{exp}\}$ can be obtained.

This method was applied in [1] to determine h_{BC} in PFIS_W and PFIS_{NW} CICCs. The same experimental data were analysed in [2] using another method.

Method proposed in [1] Problem with the model (I)

Zachodniopomorski

Uniwersytet

Technologiczny w Szczecinie

CRPP

 $F_{0} = 0$ $T_{0} = 0.18 \text{ m/s}, k = 0.04 \text{ m}^{2}/\text{s}$ $V = 0.18 \text{ m/s}, k = 0.02 \text{ m}^{2}/\text{s}$ $V = 0.09 \text{ m/s}, k = 0.02 \text{ m}^{2}/\text{s}$ $10 \qquad 20 \qquad 30$ t (s)

The model formulated in [1] considers time evolution of the rectangular temperature step at x=0 imposed as the initial condition.

ÉCOLE POLYTECHNIQUE

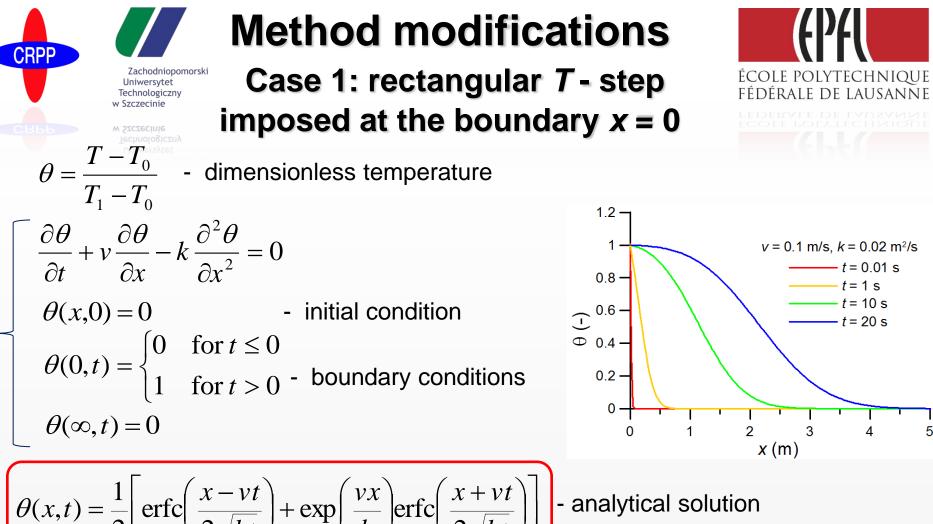
FÉDÉRALE DE LAUSANNE

 According to the analytical solution presented in [1] temperature at x = 0 (corresponding to the sample inlet) varies with time:

$$T(x=0,t) = T_0 + \frac{1}{2}(T_1 - T_0)erfc\left(\frac{-v}{2}\sqrt{\frac{t}{k}}\right)$$

- As a result of the mathematical model adopted in [1] a smeared step of the helium inlet temperature occurs.
- The case considered in [1] is not equivalent to the case of rectangular step change of the inlet temperature.

Problem with the model (II)



In the ideal case the temperature step entering the sample should be rectangular, however ...

- heat exchange between the heater and helium is not instantaneous,
- heat pulse travels a distance between the heater and the sample inlet, which results in some diffusion,
- helium flow may be disturbed at the sample inlet or due to the presence of joints (if any).

The actual time dependence of the inlet temperature cannot be verified - thermometers have not been installed at the sample inlet 🐵

Is the scalling law for τ (and the resulting h_{BC}) affected by the way of the model formulation ???

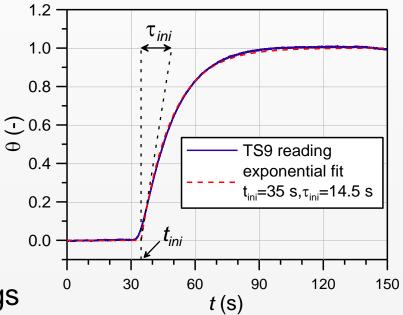
$$\theta(x,t) = \frac{1}{2} \left[\operatorname{erfc}\left(\frac{x - vt}{2\sqrt{kt}}\right) + \exp\left(\frac{vx}{k}\right) \operatorname{erfc}\left(\frac{x + vt}{2\sqrt{kt}}\right) \right]$$

- scaling law providing h_{BC} values (16/9 π) \approx **1.8 times smaller** than the scaling law obtained in [1]

A very dissatisfactory disambiguity 😕

Method modifications

Case 2: TS9 reading used as the boundary condition (I)



- We chose the origin of the *x* coordinate at the location of the thermometer closest to the sample inlet (TS9 in our case).
- Reading of TS9-sensor for each pulse is approximated by an exponential model

$$\theta(0,t) = \begin{cases} 0 & \text{for } t \le t_{ini} \\ 1 - \exp\left(\frac{t_{ini} - t}{\tau_{ini}}\right) & \text{for } t > t_{ini} \end{cases}$$

to be used as the boundary condition at x = 0.

• Least square fitting is used to match the exponential model to TS9 readings for each pulse $\rightarrow t_{ini}$ and τ_{ini} .

Method modifications

Case 2: TS9 reading used as the boundary condition (II)

— *t* = 16 s

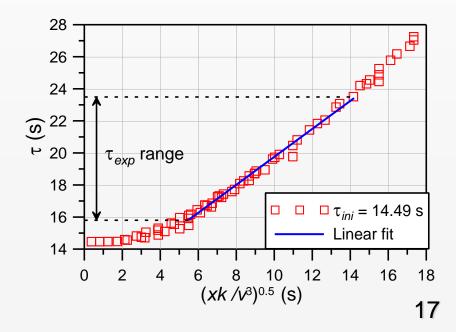
5

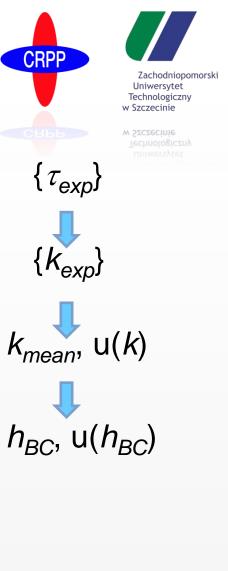
x (m)

6

$$\begin{bmatrix} \frac{\partial \theta}{\partial t} + v \frac{\partial \theta}{\partial x} - k \frac{\partial^2 \theta}{\partial x^2} = 0 \\ \theta(x,0) = 0 \\ \theta(0,t) = \begin{cases} 0 & \text{for } t \le 0 \\ 1 - \exp(-t/\tau_{ini}) & \text{for } t > 0 \\ \theta(\infty,t) = 0 \end{bmatrix}$$

$$\begin{aligned} \theta(x,t) &= \theta_1(x,t) - \theta_2(x,t) \\ \theta_1(x,t) &= \frac{1}{2} \left[\operatorname{erfc} \left(\frac{x - vt}{2\sqrt{kt}} \right) + \exp\left(\frac{vx}{k} \right) \operatorname{erfc} \left(\frac{x + vt}{2\sqrt{kt}} \right) \right] \\ \theta_2(x,t) &= \frac{1}{2} \exp\left(\frac{-t}{\tau_{ini}} \right) \exp\left(\frac{vx}{2k} \right) \frac{x}{\sqrt{\pi k}} \int_0^t \xi^{-3/2} \exp\left[\xi \left(\frac{1}{\tau_{ini}} - \frac{v^2}{4k} \right) - \frac{x^2}{4k\xi} \right] d\xi \end{aligned}$$


Method modifications


Case 2: *TS9* reading used as the boundary condition (III)

- We did not manage to formulate a universal scaling law, which is a disadvantage of this approach.
- In principle a separate scaling equations should be obtained for each τ_{ini} value (i.e. for each considered pulse). However, for similar values of τ_{ini} we used their average.
- Least square fitting was used to obtain scaling equations in the linear form:

$$\tau \approx a \sqrt{kx/v^3} + b$$

Method proposed in [1] and its modifications

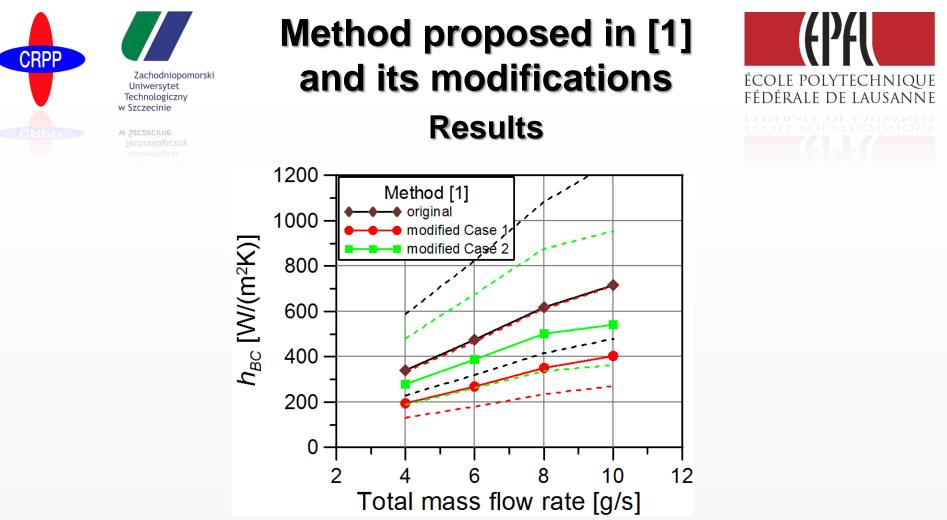
Uncertainties evaluation

$$h_{BC} = \frac{1}{k} \frac{A_{C}^{2} A_{B}^{2}}{(A_{C} + A_{B})^{3}} \left(\frac{\rho C_{p}}{p_{BC}}\right) \left[v_{C} \left(1 + \frac{A_{C}}{A_{B}}\right) - \frac{\dot{m}}{A_{B}\rho}\right]^{2}$$

$$u(k_{mean}) = \sqrt{\frac{\sum_{i=1}^{n} \left(k_{\exp_i} - k_{mean}\right)^2}{n(n-1)}}$$

Relative uncertainties:

 $u(\dot{m})/\dot{m} = 5\%$ $u(v_c)/v_c = 25/5\%$ (upper/lower bound) ^[9]


 $u(A_C)/A_C = 15\%$ (lower), due to different definitions

$$u(h_{BC}) = \sqrt{\left(\frac{\partial h_{BC}}{\partial v_{C}}\right)^{2}} u^{2}(v_{C}) + \left(\frac{\partial h_{BC}}{\partial A_{C}}\right)^{2} u^{2}(A_{C}) + \left(\frac{\partial h_{BC}}{\partial m}\right)^{2} u^{2}(m) + \left(\frac{\partial h_{BC}}{\partial k}\right)^{2} u^{2}(k)$$

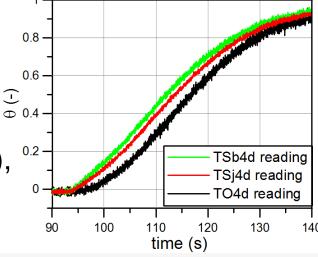
The resulting uncertainties of h_{BC} are large \otimes (up to 70% for the upper bound)

ÉCOLE POLYTECHNIQUE

FÉDÉRALE DE LAUSANNE

- All methods are very sensitive to small changes of the v_c and A_c values used in the evaluation of h_{BC} (v_c is the most critical).
- Accurate knowledge of the flow partition in a cable is necessary to obtain reliable h_{BC} values, which seems challenging with the existing methods.

Following [1] we assume that readings of TSx, TOx, TSbx and TSjx sensors can be approximated by the analytical solution θ_B



Starting delay

Time at which the temperature rise is registered by the *T*-sensor located at a distance *x* depends on:

- the time t_0 at which the heater is switched on,
- the time delay Δt_h , after which the heat pulse reaches the sample inlet,
- the time delay related to the duration of heat transfer in the radial direction (difficult to estimate, but visible in our data),
- the time during which the heat pulse travels a distance x within the sample (taken into account in the analytical solution).

21

The first three effects are lumped together into one parameter called "*starting delay*" [2]. Its value can be determined by matching the solution to experimental data.

Fitting

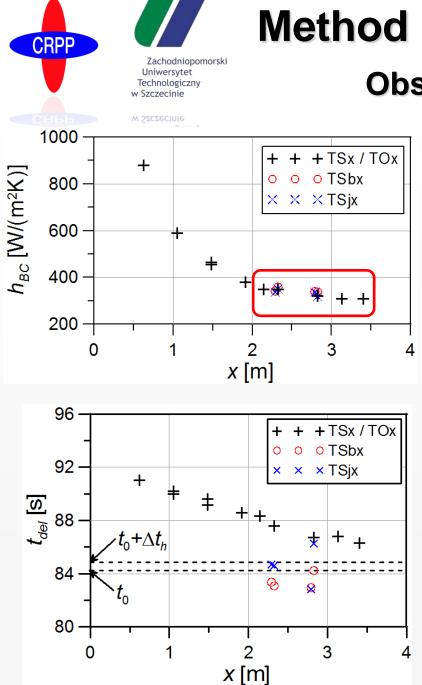
- We used the least square fitting procedure with the two free parameters h_{BC} and t_{del} .
- A characteristic feature of the analytical solutions is a sharp temperature front at *t* = *t_{del}* + *x*/*v_B*, where *x* is the sensor position.

CRPP

7achodniopomorski

Uniwersytet

Technologiczny


Szczecinie

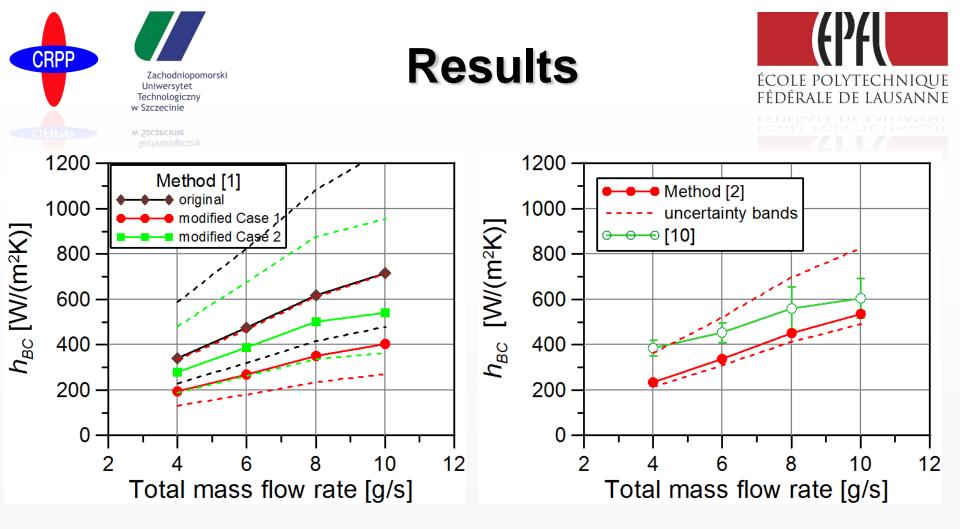
• Such a temperature jump is not observed in *T*-sensors' readings.

• The smaller is *x* the higher is the temperature front and the poorer the agreement between the fits and the data.

For small x parameters h_{BC} and t_{del} , obtained from fitting, are pushed towards higher values.

Observed trends

- For the further statistical analysis we used only h_{BC} values obtained for thermometers at x > 2 m, for which the dependence on x is weak.
- The h_{BC} values for the sensors TOx, TSjx and TSbx located at the same distance are consistent O
- The dependence of the starting delay on *x* cannot be explained by the presence of joints.
- The values of t_{del} for thermometers mounted inside the cable are very small (**some are smaller than** t_0 !).
 - Parameter *t_{del}* does not have a clear physical interpretation??


Uncertainties evaluation

ECOLE POLYTECHNIQUE

DÉRALE DE LAUSANNE

- The uncertainties of h_{BC} resulting from the fitting procedure and standard deviations of the mean are very small (of about 2%).
- To assess the contributions of the uncertainties of v_C , A_C and \dot{m} used in the calculations to the uncertainty of h_{BC} , we performed a sensitivity analysis.
- We increased (or decreased) the value of one of the parameters v_C , A_C or \overline{m} by the value of the respective error bar and repeated the fitting procedure for several selected thermometers. Then we estimated the respective relative change of the h_{BC} value.
- All these contributions were lumped together resulting in an upper band of the h_{BC} uncertainty of 54% and lower one of 8.4%.
- The values of t_{del} were much more stable than h_{BC} with respect to the changes of parameters v_C , A_C and \dot{m} .

The surprisingly small values of t_{del} obtained for the sensors mounted in the cable space cannot result from the inaccurately measured v_c used in the calculations.

The h_{BC} values obtained in [1] for the PFIS_W and PFIS_{NW} conductors were systematically smaller (about 30%) than those in [2].

Here we see the opposite trend.

Different methods of v_c evaluation and different A_c definitions used in [1] and [2] can be the possible reason of inconsistent results.

Summary and Conclusions

- We derived the h_{BC} values for the final-design ITER TF conductor from the measurements of a heat slug propagation experiment.
- Two different models proposed in [1] and [2] were used for interpretation of experimental data.
- To the former we added 2 modifications and assessed their impact on the results.
- Results obtained with both methods are sensitive to uncertainties of v_C , A_C and \dot{m} values used in the calculations (v_C is the most critical). The resulting uncertainties of h_{BC} are particularly large (up to 70%) with the method proposed in [1] and its modifications.
- The original method [1] and its 1^{st} modification are rapid in practical use, but they can provide the approximate range in which h_{BC} value should fall.
- The 2nd modification proposed by us does not involve any unverified assumptions about the helium inlet temperature, but requires more efforts, since no universal scaling equation for τ was formulated.
- Method proposed [2] is based on unrealistic assumption that the temperature step is rectangular which affects the results → modification could be proposed ?
- Method based on analysis of steady state temperature profiles resulting from annular heating [6] seems more accurate.

Thank you for your attention

Question Time

