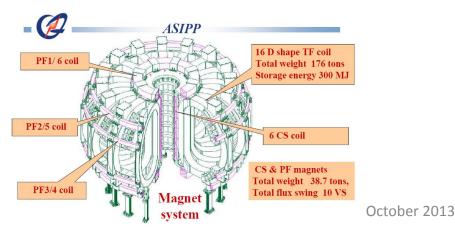


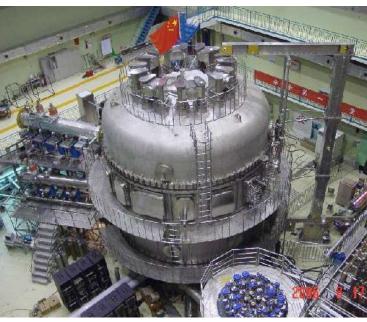
Application of the 4C code to the thermal-hydraulic analysis of the CS superconducting magnets in EAST

R. Zanino¹, R. Bonifetto¹, U. Bottero¹, X. Gao², L. Hu², J. Li², J. Qian², L. Savoldi Richard¹, Y. Wu²

¹ Dipartimento Energia, Politecnico di Torino, I-10129 Torino, Italy ² Institute of Plasma Physics Chinese Academy of Sciences (ASIPP), Hefei, Anhui 230031, P.R. China

- 1) Problem
- 2) Tool
- 3) Model
- 4) Preliminary results
- 5) Conclusions and perspective




EAST tokamak

<u>Experimental Advanced Superconducting</u>
 <u>Tokamak operates since 2006 in Hefei</u>, China

Toroidal field, B	3.5 T
Plasma current, I _P	1.0 MA
Major radius, R ₀	1.7 m
Minor radius, a	0.4 m

SC coils based on NbTi strands

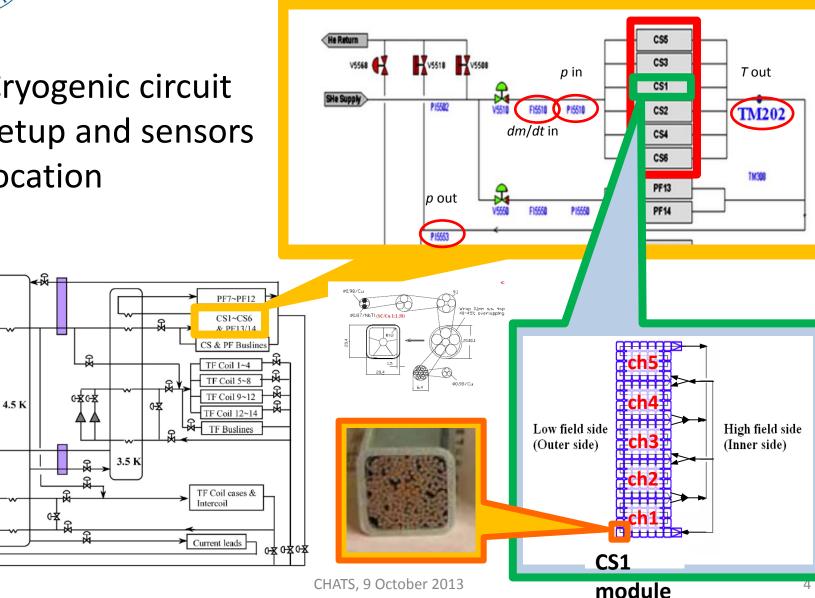
4.5K GHe

SHe Supply

LHe from 10m3 Dewar

3.5K GHe

œœ ▲▲

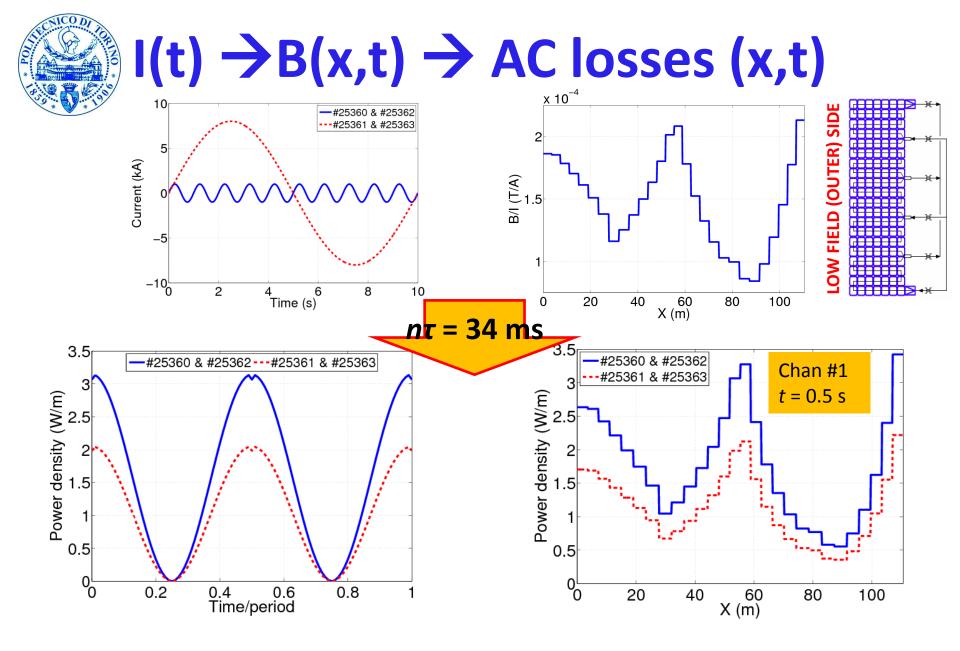

28<u>0K GH</u>e

Cooldown

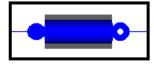
5

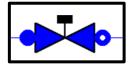
EAST Central Solenoid

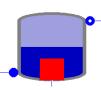
Cryogenic circuit setup and sensors location



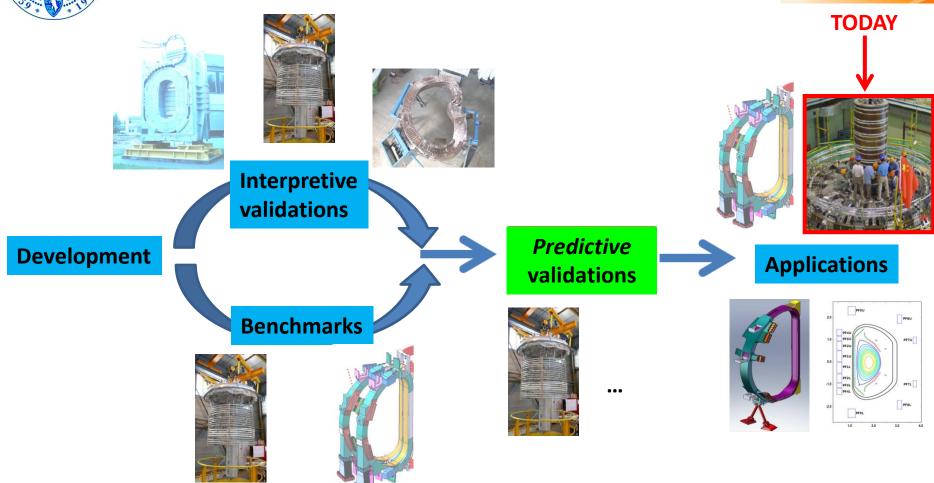
Selected shots


- Current in CS1 only
 - #25360: 1kA, 40 cycles
 - #25361: 8kA, 4 cycles
- Current in CS2 only
 - #25362: 1kA, 40 cycles
 - #25363: 8kA, 4 cycles (Y) true (Y) tr



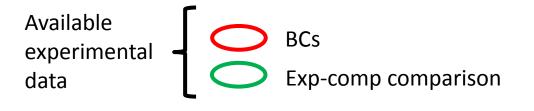

The 4C code

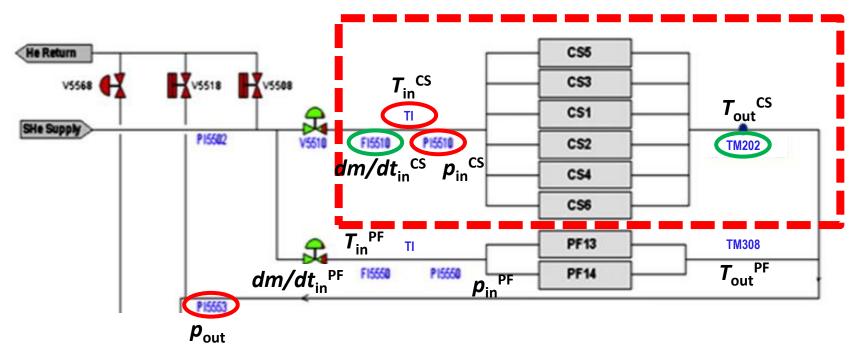
Cryogenic circuit(s) 0D/1D model

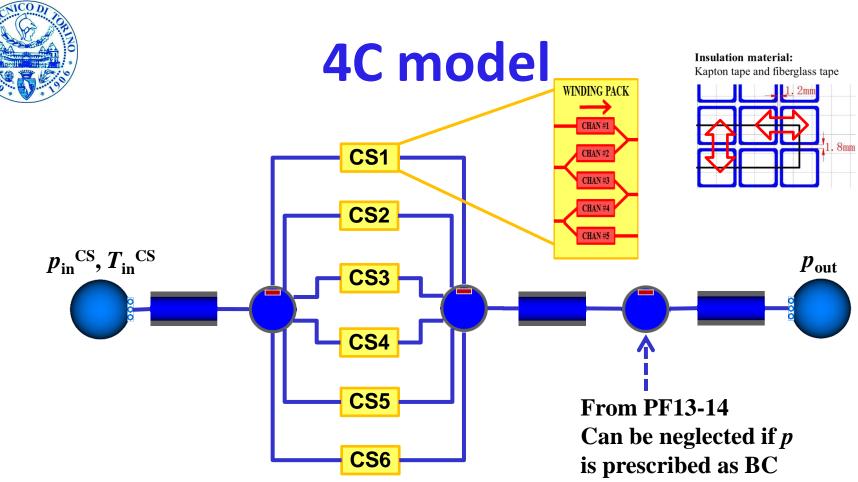


<u>Validated</u> quasi-3D thermalhydraulic model of the **winding** + casing cooling channels ← Compressible 1D SHe flow in dual channel CICC + pipes, thermally coupled to neighbors [L. Savoldi Richard, F. Casella, B. Fiori and R. Zanino, *Cryogenics* <u>50</u> (2010) 167-176]

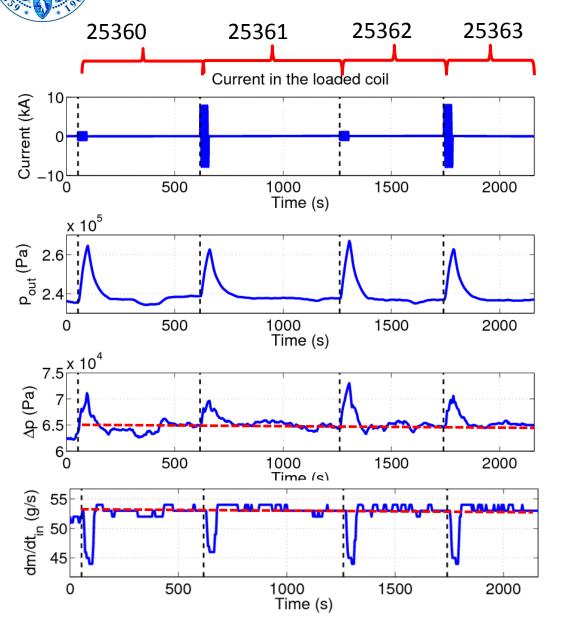
Quasi-3D FE thermal model of the **structures** (casing, radial plates, ...)


4C roadmap





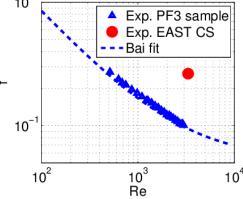
4C analysis domain



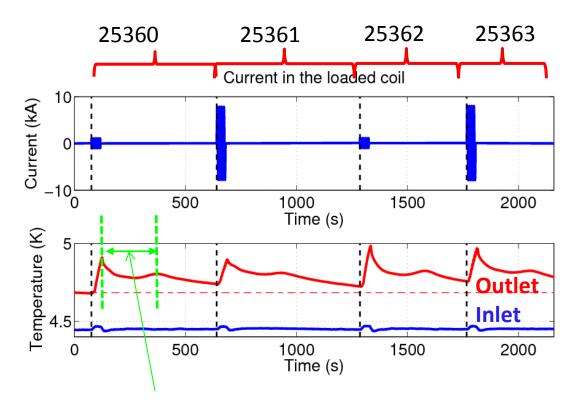
- No structures
- Common inlet and outlet manifolds (including the volume of the short pipes connecting the manifolds to the coils inlets and outlets)
- All coils are same \rightarrow well balanced dm/dt repartition @ steady state
- Inter-turn/inter-pancake (ITIP) coupling accounted for
- Heat transfer between neighboring coils neglected ($\delta^{\text{ins}}_{\text{coils}} = 10 \times \delta^{\text{ins}}_{\text{pancakes}}$)

10

Hydraulics (exp)

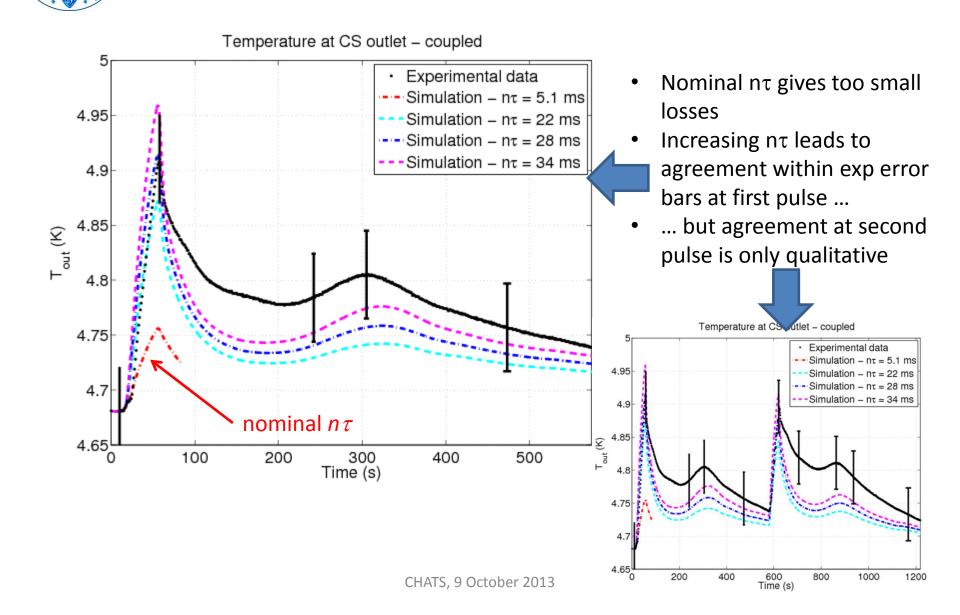


- CS1 and CS2 behave very similarly → concentrate simulations on first two pulses
- Pressurization (reacting directly to the power deposition) starting from operation pressure very close to p_c (~2.27 bar)
- ~ steady state $\Delta p = (p_{in} p_{out})$ and (dm/dt) can be used for conductor characterization


Hydraulics (comp)

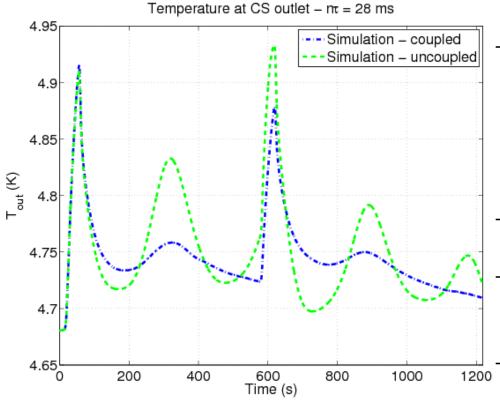
- Friction factor *f*(*Re*) is needed for the simulation
- Katheder-type and porous medium type correlations (Long, RZ et al, Bottura, Bagnasco, Lewandowska, ...)
- EAST PF3 sample (*should* be same as used in CS) tested in the past well reproduced by Katheder using ~38% void fraction (Bai)
- In order to reproduce the present CS steady state operation significantly smaller void fraction is needed
 (?) or ad-hoc multiplier of "standard" f 10° Exp. PF3 sample

Thermal-hydraulics (exp)



Estimate of He speed compatible with measured mass flow rate only for reduced flow area/void fraction wrt design value Steady state NOT reached before the subsequent shot is triggered

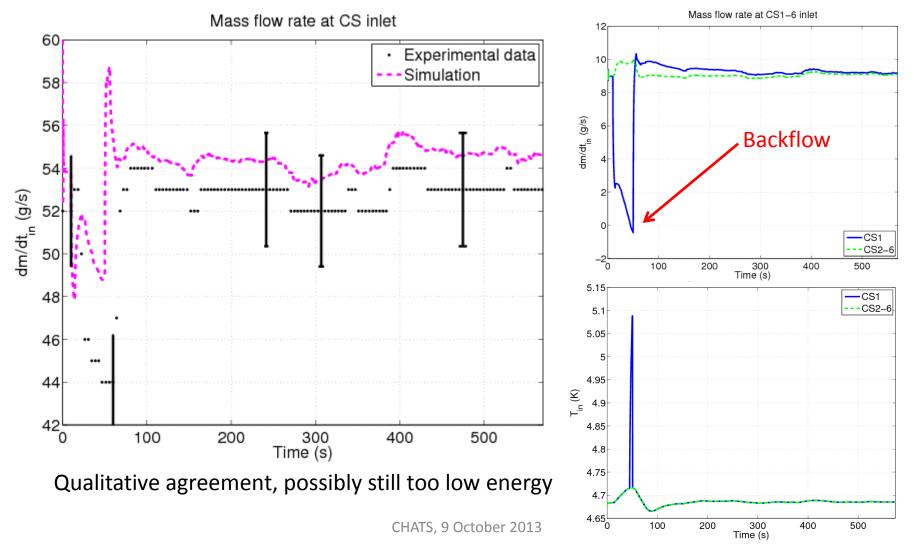
 Maximum temperature increase < 0.3 K, BUT it is average T after mixing → Much larger effect expected in single loaded coil


 Static load → T_{out} > T_{in} @ steady state: assume constant load → initial T_{out} - T_{in} treated as constant offset

nτ parameterization

Effect of ITIP thermal coupling

- <u>Coupled</u> = nominal thermal coupling between turns and between pancakes
- <u>Uncoupled</u> = thermally insulated turns and pancakes



- First peak of the first pulse not influenced due to short He path
- Without coupling the temperature of the helium flowing between the high power deposition regions is lower than in the coupled case because no heat comes from the hotter neighbors.
- The reverse happens for the temperature peaks
- Uncoupling (eg, contact resistance) should improve agreement at the second peak but worsen at the dip Excessive uncoupling leads to third peak in simulation (not seen in exp)

Inlet mass flow rate

Computed behavior at the inlet of the <u>single coils</u>

Conclusions and perspective

- The thermal-hydraulic effects of AC losses in the EAST central solenoid have been investigated with 4C
- The problem is affected by several experimental uncertainties concerning both the hydraulics of the CICC and the losses, and the number of available diagnostics is limited
- Preliminary results of the simulations are in qualitative agreement with the experiment, but larger $n \tau$ and smaller void fraction than expected are needed
- In perspective we should like to first clarify the experimental uncertainties, before performing further simulations with firmer input basis

Backup slides

Voidfraction and n*tau

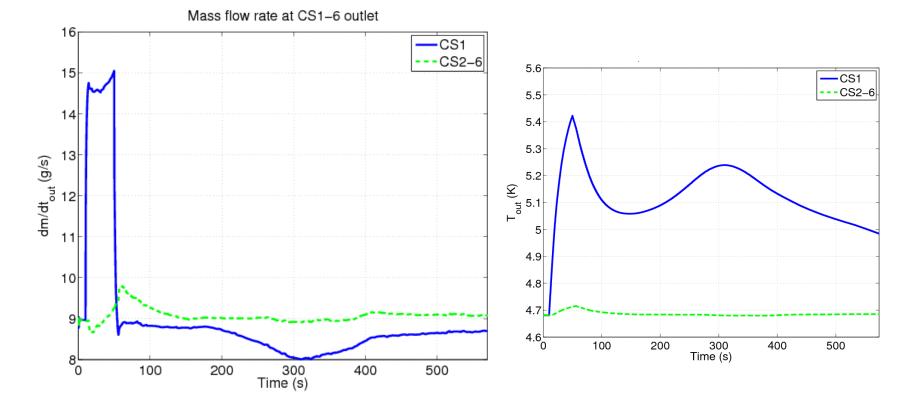
 [Weng P.D., et al., "Test results and analyses of conductor short samples for HT-7U", Cryogenics 43, pp. 165-171 (2003)]

able 2 he description of short sa	amples			
Conductor	TF	PF1	PF2	PF3
Cable pattern	$(2Sc + 2Cu) \times 3 \times 4 \times 5$	$(2Sc + 2Cu) \times 3 \times 4 \times 5$	$(2Sc + 2Cu) \times 3 \times 4 \times 5$	$(2Sc + 2Cu) \times 3 \times 4 \times 5$
NbTi strands	120	120	120	120
Cu strands	120 + 21	120 + 21	120 + 21	120 + 21
Twist pitches (mm)	50/86/117/200	40/86/117/260	40/86/117/260	40/86/117/260
Coating	Solder	Solder	Ni	Ni
Void fraction (%)	37.32	36.67	36.67	38.44

Table 3

The coupling time constants $n\tau$ of TF, PF1, PF2 and PF3

* +				
Name of conductors	TF (ms)	PF1 (ms)	PF2	PF3 (ms)
Time constant $n\tau$ ($f = 0.05-0.1$)	36.8	13.5	2.3	5.1
Time constant $n\tau$ ($f = 2-6$)	12.4	7.8	2.37	1.43


AC losses formulae

$\frac{dB}{dt} =$	$\frac{B}{I}\frac{dI}{dt}$ (self field)		
Provided	Computed (cosine)		
Coupling losses	$Q_{\rm cp} = A_{\rm strands} \begin{cases} \frac{n\tau}{\mu_0} (1 - \beta_{\rm cp}) \left(\frac{dB}{dt}\right)^2 & (\beta_{\rm cp} < 0.31) \\ \frac{4}{3\pi} \frac{B_{\rm cp}}{\mu_0} \left(\frac{dB}{dt}\right) & (\beta_{\rm cp} \ge 0.31) \end{cases}$	W/m	
Hysteresis losses (perpendicular field part)	$Q_{\text{hys}} = \begin{cases} \frac{B^2}{6\mu_0 B_p} \left \frac{dB}{dt} \right \left(1 - \frac{B}{4B_p} \right) A_{\text{nonCu}} (B < B_p) \\ \frac{2}{3\pi} J_c d_{\text{eff}} \left(1 + \frac{I_{\text{tr}}^2}{I_c^2} \right) \left \frac{dB}{dt} \right A_{\text{nonCu}} (B \ge B_p) \end{cases}$	W/m	n=2, R=R _{strand} B _p = $\frac{\mu_0 J_c}{\pi} d_{eff}$ d _{eff} =6µm
Eddy current losses in pure Cu strands	$Q_{eddy}^{Cu} = \left(\frac{R_{st}^2}{4\eta_{cu}}\right) \left(\frac{dB_{\perp}}{dt}\right)^2 A_{pure-Cu}$	W/m	[Wang Q., et al., "Operating Temperature Margin and Heat Load in PF Superconducting Coils of KSTAR", IEEE Trans. Appl. Supercond. 12, pp. 648-652 (2002)]

 $n\tau_{CS}$ =5.1 ms $\leq n\tau_{samples} \leq n\tau_{TF}$ =36.8 ms [Weng P.D., et al., "Test results and analyses of conductor for v~ 0.05–0.1 Hz, lower for v~2-6 Hz short samples for HT-7U", Cryogenics 43, pp. 165-171 (2003)]

Outlet mass flow rate

Calorimetry

Energy deposited (kJ)	Experiments	<i>nτ</i> = 22 ms		<i>nτ</i> = 28 ms		<i>nτ</i> = 34 ms	
		Simulation (1)	Simulation (2)	Simulation (1)	Simulation (2)	Simulation (1)	Simulation (2)
Shot 1	49.0	39.8	39.6	41.8	41.6	44.0	43.5
(564 s)	REF	-19%	-19%	- 15%	- 15%	-10%	-11%
Shot 2	60.5	44.8	44.8	48.7	48.4	50.0	49.7
(645 s)	REF	-26%	-26%	-19%	- 20%	-17%	-18%
Total	109.5	84.6	84.4	90.5	90.0	94.0	93.2
	REF	-23%	-23%	- 17%	-18%	-14%	-15%

- Experiments \rightarrow
- Simulation (1) \rightarrow
- Simulation (2) \rightarrow

$$\int \dot{m}_{in}^{\exp}(h_{out}^{\exp} - h_{in}^{\exp})dt$$
$$\int \dot{m}_{in}^{sim}(h_{out}^{sim} - h_{in}^{sim})dt$$
$$\int (\dot{m}_{out}^{sim}h_{out}^{sim} - \dot{m}_{in}^{sim}h_{in}^{sim})dt$$