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Applicability and limitations 
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Simulation of realistic HTS devices 

Comparison with experiments 

2-D solutions for 3-D problems 

Full 3-D models 

Summary and conclusion 
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Developed in the framework of the Critical State Model 

Widely used do to their simplicity 

Example: magnetization losses of a thin superconducting tape 

Analytical models 

CHATS-AS Workshop, Cambridge, MA, October 9-11, 2013 

Ingredients: 

•Tape’s width 2a 

•Tape’s critical current Ic 

•Amplitude of external field H0 

H0 

 

+a -a 



4 Francesco Grilli 

KIT-ITEP 

Sometimes they work well 

Analytical models 

CHATS-AS Workshop, Cambridge, MA, October 9-11, 2013 
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Sometimes they don’t 

Analytical models 

CHATS-AS Workshop, Cambridge, MA, October 9-11, 2013 
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Simple geometries 

Difficult to model structured tapes (filaments, stabilizers, magnetic 

materials,…) 

Tape assemblies: only infinite stacks/arrays 

No end effects in assemblies with finite number of tapes 

Mostly based on Critical State Model 

No frequency dependence in AC phenomena  

No overcritical excursions 

Difficult to implement Jc(B, theta) and Jc(x,y,z) dependencies 

Uniform fields, simple current/field sources (ramps, AC) 

 

Analytical models: limitations 

CHATS-AS Workshop, Cambridge, MA, October 9-11, 2013 

Numerical models can overcome these limitations 
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Overview of the main different approaches 

CHATS-AS Workshop, Cambridge, MA, October 9-11, 2013 

Physical model: 

-Mathematical equations 

-Assumptions & hypothesis 

-Materials models 

(critical state, power law, etc.) 

Numerical method: 

-Finite element methods 

-Point collocation techniques 

-Variational methods 

-etc. 

 

+ 

Numerical model 

-Differential (PDE) vs. integral equations 

-Many choice of variables: H, E, A-V, T-W, etc. 
Hundreds of 

possible variants! 

Implementation environment: 

-Home made codes (Matlab, Python, …) 

-Commercial packages (Comsol, FlexPDE, …) 
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YBCO coated conductors with Jc(x) and Jc(B,θ) 

CHATS-AS Workshop, Cambridge, MA, October 9-11, 2013 

   Lateral variation of Jc                   Angular dependence Jc(B,θ) 

Figures extracted from: F. Gomory et al., “IEEE TAS, VOL. 23, NO. 3, 5900406, 2013” 
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Coil made of YBCO coated conductor 

CHATS-AS Workshop, Cambridge, MA, October 9-11, 2013 

Figures extracted from: F. Gomory et al., “IEEE TAS, VOL. 23, NO. 3, 5900406, 2013” 

A-V formulation 

(Campbell’s method) 
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Stacks of pancake coils of YBCO coated 

conductors 

CHATS-AS Workshop, Cambridge, MA, October 9-11, 2013 

loss 
[J/m] 

current amplitude [A] 

MMEV method 

Figures extracted from: E. Pardo et al., Supercond. Sci. Technol. 25 (2012) 035003, 

E. Pardo et. al., IEEE TAS, in press 
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HTS modelled in 2-D (axis-symmetric model) 

Copper contact in 3-D 

 

Pancake coils made of Roebel cables 

CHATS-AS Workshop, Cambridge, MA, October 9-11, 2013 

H-formulation FEM 
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Superconducting and magnetic materials 

CHATS-AS Workshop, Cambridge, MA, October 9-11, 2013 

        

    CC tapes with Ni-W substrate                         Ni-shielding of CC tapes 

Figure above from: P. Krüger et al., 

APL 102, 202601 (2013) H-formulation FEM 
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Integral equations for thin tapes 

CHATS-AS Workshop, Cambridge, MA, October 9-11, 2013 
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Figure 1. Schematic view of the considered thin conductor, which is
assumed to be infinitely long in the z direction. The external field is

applied along the y axis and the current (induced or applied) flows
along the z axis.

section 4 presents the extension of the model to non-uniform

fields; section 5 shows different examples of application of

the generalized model; section 6 contains the summary of this

work.

2. General description of the 1D model

In most of the cases of practical interest, conductors can be

considered either infinitely long or with an axial symmetry,

and 2D FEM models considering only the conductor’s cross-

section (where the main currents flow) can therefore be used

to investigate their behaviour. In the case of conductors

with very high aspect ratio, however, the number of mesh

nodes is exceedingly large, and even simple cases become

computationally very demanding. As a starting point for

developing our model we considered a thin conductor of

width 2a and thickness d, as schematically shown in figure 1.

Since most applications involve the presence of ac sources,

in the examples we will consider sinusoidal magnetic fields

and currents, although this approach is valid for any type of

waveform. With reference to figure 1, the magnetic field is

applied along the y axis and the current (induced or applied)

flows along the z axis.

In our model, we consider the thin conductor as infinitely

long and characterized by a sheet current density defined as the

current density integrated over the thickness:

Jz(x , t) =
d/ 2

−d/ 2

jz(x , y, t) dy. (1)

Since we have in this way eliminated the need for

a detailed mesh of the conductor’s interior, the Maxwell

equations can be substituted by an equivalent 1D formulation

that allows for an effective computation of the sheet current J

on the segment [−a, a]. This means that we assume that the

electromagnetic properties of the conductor do not vary in a

significant way along the thickness and that the conductor can

be effectively treated as a 1D object.

Once the distribution of current density in the thin

conductor is known at each time step, the magnetic

field outside the conductor can be computed by using a

magnetostatic 2D model, which uses the current distribution

computed with the 1D model as the source generating the

field. This method is particularly easy to be implemented in

the Comsol Multiphysics software package [1], which has a

built-in capability of coupling different models and sharing

geometries, variables and functions.

In order to test our model, we compared the results with

those obtained with a 2D FEM model of ours, which has

been thoroughly verified against analytical models as well as

experimental results [2, 3], similarly to other models based on

different implementations that can be found in the literature,

for example [4, 5].

3. Thin conductor in a uniform magnetic field: the

integral equation and its FEM solution

In the case of a conductor not connected to any external circuit

and subjected to a uniform external field, the total induced

current is zero at each time instant. Due to the symmetry of

the problem, the sheet current J has to be an odd function of

x : J (−x) = −J (x), and only half of the geometry needs to be

considered since the centre of the conductor where J (0, t) = 0

can be used as the zero point for the induced voltage V (x , t).

Integrating the Faraday and Ampère laws over the section

of the conductor we find that the equivalent formulation can

be represented by an integral equation whose solution gives

the sheet current Jz as a function of the applied external field

and/or of the transport current. As reported in [6], the integral

equation to be solved is

J (x , t) =
µd

ρ
Ḣa(t)x +

1

2π

a

0

J̇ (u, t) ln
x −u

x + u
du

= τ [K (x , t) + Q(x , t)] , (2)

where Ha(t) is the externally (uniform) applied magnetic field,

τ = µd/ ρ, and K (x , t) and Q(x , t) are a compact form

of writing the two terms appearing on the right-hand side of

equation (2). The symmetry of the logarithmic kernel with

respect to x reflects the physical symmetry of the problem.

The first term on the right-hand side corresponds to the

current density induced by the external field, whereas the

second term represents the reaction current density generated

by the self-field originating from the eddy currents. At a

given temperature, the electrical resistivity can be constant,

as in normal metals, or a function of the current density, as

for example in the power law generally used to describe the

electrical behaviour of superconductors [7].

Equation (2) is not in the most common form of integral–

differential equations, where the differentiation and integration

are made with respect to the same variable. A direct analytical

solution of (2) is problematic because of the presence of

the logarithmic kernel that becomes singular for u = x .

Also the method of the separation of the variables cannot be

applied. In order to obtain approximate solutions, a reliable

numerical scheme is to be devised. This task can be quite

difficult and may involve several ad hoc assumptions. For

2
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applied along the y axis and the current (induced or applied) flows
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the generalized model; section 6 contains the summary of this

work.
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those obtained with a 2D FEM model of ours, which has

been thoroughly verified against analytical models as well as

experimental results [2, 3], similarly to other models based on
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integral equation and its FEM solution
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Figure 2. Current density distributions computed for linear and non-linear materials with the developed 1D model (left), compared with 2D

results (right). The applied field is 5 mT with a frequency of 50 Hz. The profiles are taken from t = 0.02 s (corresponding to ωt = 2π) to
t = 0.025 s (corresponding to the peak of the external field at ωt = 5π/ 2); the arrows indicate the direction of increasing time.

example, in his 1994 paper [6], Brandt replaced the equation

with a system of linear equations referring to a set of nodal

points spaced along the interval [0, a]. In this way the

integral kernel becomes an approximate sum. Nowadays, this

integral equation can be very efficiently converted into an FEM

problem, where the approximation error is better spread over

the domain than with point allocation methods such as above.

The simulated geometry is a properly meshed segment [0, a],

which corresponds to the right-hand half of the conductor’s

width. Equation (2) is directly inserted in the model by means

of extrusion/projection of the variables in order to convert

the integral kernel into a parametric form depending on x .

In general, at the two endpoints, the Neumann conditions

are imposed. In the symmetric case represented by (2), the

current density is null in the centre of the tape; therefore

we can impose the Dirichlet condition J = 0 at x = 0.

Where this symmetry is lacking, as in the examples presented

in the following sections, the Neumann conditions allow for

the required adaptability to integral constraints via Lagrange

multipliers.

In the examples shown in this paper, we considered the

two following cases:

• linear resistivity, ρ = 10−12 m;

• non-linear resistivity, ρ = Ec/ Jc · |J / Jc|
n−1.

For the non-linear resistivity case we considered typical

values for high temperature superconductors: Ec =

10−4 V m−1, Jc between 109 and 1010 A m−2, n = 25. The

conductor is 3 mm wide and 1 to 10 µm thick. The frequency

of the ac sources (transport current and applied magnetic field)

is 50 Hz.

Figure 2 shows the current density profiles in the right-

hand half of the conductor induced by a sinusoidal field of

amplitude 5 mT. Shown are the profiles obtained with linear

and non-linear resistivity, both compared with the results of

the corresponding 2D model. It can be seen from the figure

that the main effect of the non-linearity of the resistivity is to

force the current distribution near the edge of the conductor.

The results of the 1D model are in very good agreement with

the 2D ones, but they can be obtained in a much shorter time.

The advantage with respect to a standard 2D model becomes

particularly evident when thinner conductors are considered.

It has to be remarked that in the 2D model a coarse mesh

with as little as two elements along the conductor’s thickness

provides acceptable results for the magnetic field profiles but

not for the current density. This is because the magnetic field

components are the state variables of the 2D model and are

therefore directly computed, whereas the current density is

computed by derivation and is consequently very sensible to

the mesh discretization. Similarly to the field profiles, the

ac losses are also usually correctly calculated with a coarse

mesh. The reason is that the most important contribution to the

losses comes from the region near the conductor’s edge where

the superconductor is saturated with a current density slightly

higher than Jc. In contrast, the shape and the smoothness of

the profile with which the current density decreases toward

the centre of the tape depends on the mesh accuracy. For

these reasons, in the case of 2D model, we have compared

two different mesh sizes, using two and four elements along

the conductor’s thickness. The curves shown in figure 2 have

been computed with the finer mesh. Table 1 summarizes the

3
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integral equation can be very efficiently converted into an FEM

problem, where the approximation error is better spread over

the domain than with point allocation methods such as above.

The simulated geometry is a properly meshed segment [0, a],

which corresponds to the right-hand half of the conductor’s

width. Equation (2) is directly inserted in the model by means

of extrusion/projection of the variables in order to convert

the integral kernel into a parametric form depending on x .

In general, at the two endpoints, the Neumann conditions

are imposed. In the symmetric case represented by (2), the

current density is null in the centre of the tape; therefore

we can impose the Dirichlet condition J = 0 at x = 0.

Where this symmetry is lacking, as in the examples presented

in the following sections, the Neumann conditions allow for

the required adaptability to integral constraints via Lagrange

multipliers.

In the examples shown in this paper, we considered the

two following cases:

• linear resistivity, ρ = 10−12 m;

• non-linear resistivity, ρ = Ec/ Jc · |J/ Jc|
n−1.

For the non-linear resistivity case we considered typical

values for high temperature superconductors: Ec =

10−4 V m−1, Jc between 109 and 1010 A m−2, n = 25. The

conductor is 3 mm wide and 1 to 10 µm thick. The frequency

of the ac sources (transport current and applied magnetic field)

is 50 Hz.

Figure 2 shows the current density profiles in the right-

hand half of the conductor induced by a sinusoidal field of

amplitude 5 mT. Shown are the profiles obtained with linear

and non-linear resistivity, both compared with the results of

the corresponding 2D model. It can be seen from the figure

that the main effect of the non-linearity of the resistivity is to

force the current distribution near the edge of the conductor.

The results of the 1D model are in very good agreement with

the 2D ones, but they can be obtained in a much shorter time.

The advantage with respect to a standard 2D model becomes

particularly evident when thinner conductors are considered.

It has to be remarked that in the 2D model a coarse mesh

with as little as two elements along the conductor’s thickness

provides acceptable results for the magnetic field profiles but

not for the current density. This is because the magnetic field

components are the state variables of the 2D model and are

therefore directly computed, whereas the current density is

computed by derivation and is consequently very sensible to

the mesh discretization. Similarly to the field profiles, the

ac losses are also usually correctly calculated with a coarse

mesh. The reason is that the most important contribution to the

losses comes from the region near the conductor’s edge where

the superconductor is saturated with a current density slightly

higher than Jc. In contrast, the shape and the smoothness of

the profile with which the current density decreases toward

the centre of the tape depends on the mesh accuracy. For

these reasons, in the case of 2D model, we have compared

two different mesh sizes, using two and four elements along

the conductor’s thickness. The curves shown in figure 2 have

been computed with the finer mesh. Table 1 summarizes the
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example, in his 1994 paper [6], Brandt replaced the equation

with a system of linear equations referring to a set of nodal

points spaced along the interval [0, a]. In this way the

integral kernel becomes an approximate sum. Nowadays, this

integral equation can be very efficiently converted into an FEM

problem, where the approximation error is better spread over

the domain than with point allocation methods such as above.

The simulated geometry is a properly meshed segment [0, a],

which corresponds to the right-hand half of the conductor’s

width. Equation (2) is directly inserted in the model by means

of extrusion/projection of the variables in order to convert

the integral kernel into a parametric form depending on x .

In general, at the two endpoints, the Neumann conditions

are imposed. In the symmetric case represented by (2), the

current density is null in the centre of the tape; therefore

we can impose the Dirichlet condition J = 0 at x = 0.

Where this symmetry is lacking, as in the examples presented

in the following sections, the Neumann conditions allow for

the required adaptability to integral constraints via Lagrange

multipliers.

In the examples shown in this paper, we considered the

two following cases:

• linear resistivity, ρ = 10−12 m;

• non-linear resistivity, ρ = Ec/ Jc · | J / Jc|
n−1.

For the non-linear resistivity case we considered typical

values for high temperature superconductors: Ec =

10−4 V m−1, Jc between 109 and 1010 A m−2, n = 25. The

conductor is 3 mm wide and 1 to 10 µm thick. The frequency

of the ac sources (transport current and applied magnetic field)

is 50 Hz.

Figure 2 shows the current density profiles in the right-

hand half of the conductor induced by a sinusoidal field of

amplitude 5 mT. Shown are the profiles obtained with linear

and non-linear resistivity, both compared with the results of

the corresponding 2D model. It can be seen from the figure

that the main effect of the non-linearity of the resistivity is to

force the current distribution near the edge of the conductor.

The results of the 1D model are in very good agreement with

the 2D ones, but they can be obtained in a much shorter time.

The advantage with respect to a standard 2D model becomes

particularly evident when thinner conductors are considered.

It has to be remarked that in the 2D model a coarse mesh

with as little as two elements along the conductor’s thickness

provides acceptable results for the magnetic field profiles but

not for the current density. This is because the magnetic field

components are the state variables of the 2D model and are

therefore directly computed, whereas the current density is

computed by derivation and is consequently very sensible to

the mesh discretization. Similarly to the field profiles, the

ac losses are also usually correctly calculated with a coarse

mesh. The reason is that the most important contribution to the

losses comes from the region near the conductor’s edge where

the superconductor is saturated with a current density slightly

higher than Jc. In contrast, the shape and the smoothness of

the profile with which the current density decreases toward

the centre of the tape depends on the mesh accuracy. For

these reasons, in the case of 2D model, we have compared

two different mesh sizes, using two and four elements along

the conductor’s thickness. The curves shown in figure 2 have

been computed with the finer mesh. Table 1 summarizes the
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example, in his 1994 paper [6], Brandt replaced the equation

with a system of linear equations referring to a set of nodal

points spaced along the interval [0, a]. In this way the

integral kernel becomes an approximate sum. Nowadays, this

integral equation can be very efficiently converted into an FEM

problem, where the approximation error is better spread over

the domain than with point allocation methods such as above.

The simulated geometry is a properly meshed segment [0, a],

which corresponds to the right-hand half of the conductor’s

width. Equation (2) is directly inserted in the model by means

of extrusion/projection of the variables in order to convert

the integral kernel into a parametric form depending on x .

In general, at the two endpoints, the Neumann conditions

are imposed. In the symmetric case represented by (2), the

current density is null in the centre of the tape; therefore

we can impose the Dirichlet condition J = 0 at x = 0.

Where this symmetry is lacking, as in the examples presented

in the following sections, the Neumann conditions allow for

the required adaptability to integral constraints via Lagrange

multipliers.

In the examples shown in this paper, we considered the

two following cases:

• linear resistivity, ρ = 10−12 m;

• non-linear resistivity, ρ = Ec/ Jc · | J / Jc|
n−1.

For the non-linear resistivity case we considered typical

values for high temperature superconductors: Ec =

10−4 V m−1, Jc between 109 and 1010 A m−2, n = 25. The

conductor is 3 mm wide and 1 to 10 µm thick. The frequency

of the ac sources (transport current and applied magnetic field)

is 50 Hz.

Figure 2 shows the current density profiles in the right-

hand half of the conductor induced by a sinusoidal field of

amplitude 5 mT. Shown are the profiles obtained with linear

and non-linear resistivity, both compared with the results of

the corresponding 2D model. It can be seen from the figure

that the main effect of the non-linearity of the resistivity is to

force the current distribution near the edge of the conductor.

The results of the 1D model are in very good agreement with

the 2D ones, but they can be obtained in a much shorter time.

The advantage with respect to a standard 2D model becomes

particularly evident when thinner conductors are considered.

It has to be remarked that in the 2D model a coarse mesh

with as little as two elements along the conductor’s thickness

provides acceptable results for the magnetic field profiles but

not for the current density. This is because the magnetic field

components are the state variables of the 2D model and are

therefore directly computed, whereas the current density is

computed by derivation and is consequently very sensible to

the mesh discretization. Similarly to the field profiles, the

ac losses are also usually correctly calculated with a coarse

mesh. The reason is that the most important contribution to the

losses comes from the region near the conductor’s edge where

the superconductor is saturated with a current density slightly

higher than Jc. In contrast, the shape and the smoothness of

the profile with which the current density decreases toward

the centre of the tape depends on the mesh accuracy. For

these reasons, in the case of 2D model, we have compared

two different mesh sizes, using two and four elements along

the conductor’s thickness. The curves shown in figure 2 have

been computed with the finer mesh. Table 1 summarizes the
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Figure 1. Finite Z stack: a stack of superconducting strips of infinite

length in the y direction, each carrying current I . The overall height

of the stack is 2b.

Figure 2. AC losses in an infinite Z stack, calculated from the

analytic solutions in [6], normalized to the losses in the equivalent

uniform slab, at various current amplitudes I and stack

periodicities D.

for the fields and currents. Both authors noted that in the

limit D a the solutions approach those for a uniform

infinite slab of width 2a carrying an average current density

I / 2aD. In other words, the stack becomes equivalent to

a homogeneous superconducting slab with critical current

density Jc = Ic/ 2aD, where Ic is the critical current in each

tape. We expect that in practical applications the ratio D/ a

will lie in the range 0.01–0.2. In figure 2 we show exact

calculations of the ac losses as in [6], normalized to the ac

losses calculated using the homogeneous approximation, as

a function of D/ a. It can be seen that the homogeneous

approximation is reasonably accurate for small D/ a and large

I / Ic . Specifically, if we restrict ourselves to currents of

amplitude greater than 0.2Ic, this approximation gives better

than 20% accuracy if D/ a < 0.2. From an engineering

perspective this sort of accuracy is usually adequate, especially

since the error is in the right direction (overestimating, rather

than underestimating, the dissipation).

At present there are no analytic solutions available for the

problem of a finite stack of conductors. To initially approach

this problem it makes sense to use an approach that has some

of the features of a homogeneous model. However, our model

must also account, at least approximately, for the screening by

subcritical portions of the superconducting strips. It is likely

that the error in this approach will be similar to that of the

infinite stack; see figure 2. The current density Jy and magnetic

induction B are averaged over a volume D3; that is, we use

only macroscopic values of these quantities. To model the

constraint of constant total current in each tape, we require

that Jy dx = I / D for all |z| < b. In section 2 we use this

anisotropic homogeneous-medium approximation to calculate

the ac losses of a finite Z stack of superconducting tapes. We

discuss and summarize our results in section 3.

2. Anisotropic homogeneous-medium approximation

We consider a sample initially in the virgin (magnetic-flux-

free) state and examine the initial penetration of magnetic flux

as current is applied in the y direction. We anticipate that,

similar to the case of an infinite slab, we will have a region c <

|x | < a with Jy = Jc. For simplicity, we use the Bean [9, 10]

critical state model, in which Jc is independent of the field.

Unlike the behavior in a homogeneous infinite slab, however,

in principle we should allow for c to vary as a function of z.

Further, we cannot assume that Jy = 0 and B = 0 in the region

|x | < c(z), as is the case for the homogeneous infinite slab. It

is known from studies of the critical state model in an isolated

superconducting strip [11, 12] that no significant amount of

magnetic flux can penetrate subcritical portions of the strip (i.e.

Bz = 0 wherever Jy < Jc); this is also true for each of the

strips in the Z stack. On the other hand, a finite Bx is allowed,

since magnetic flux can thread between the superconducting

layers from the ends of the tapes without fully penetrating any

superconductor. This leads to important constraints on B and

Jy = Jm in the middle region |x | < c(z). Since ∇· B = 0,

we must have ∂Bx / ∂x = 0, such that Bx depends only on

z. Ampère’s law requires that µ 0 Jm = ∂Bx / ∂z − ∂Bz / ∂x .

Since the second term on the right-hand side is zero and the

first depends only on z, we conclude that Jm can depend only

on z. Thus the current density Jy as a function of x has a step-

function character, with the values Jm for |x | < c(z) and Jc

for |x | > c(z). To have a fixed total current in each layer we

require

Jm/ Jc = 1− (a/ c)(1− I / Ic). (1)

For finite values of b, the current density Jc in the region

c < x < a contributes, via the Biot–Savart law, a positive

value of Bz(c, 0), while the current density Jc in the region

−a < x < −c contributes a negative value of smaller

magnitude. In order to make Bz(c, 0) = 0, the current density

in the region −c < x < c must obey Jm > 0, so that it makes

a negative contribution to Bz(c, 0), thereby cancelling the net

positive contribution from the currents in the regions for which

c < |x | < a. Since 0 < Jm < Jc and 0 < c < a, we thus

see that c/ a can vary in the range from (1− I / Ic) to 1. In the

limit as b → ∞ , we must find that Jy/ Jc → 0 for |x | < c and

that c/ a → 1 − I / Ic . The theoretical problem thus reduces

to finding a c(z) that yields macroscopic fields consistent with

the above requirements of the critical state. This means that we

must have a region defined by |x | < c(z) where Bz = 0.

Our primary goal in this paper is to calculate the hysteretic

ac losses in a Z stack. Using the above approach, once we
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Figure 6. Comparison of solutions for the 20-tape stack and the anisotropic bulk superconductor. Growing transport current, Itr = t ; the Kim

model (H0 = 4, k = 0). Shown for t = 0.5: left—the tape sheet current density J and the rescaled bulk density Dj ; right—the electric field
E . Thick black lines—solution for the stack model; blue lines—the bulk model solution.

Figure 7. Comparison of solutions for the 10-tape stack and the anisotropic bulk models. Growing external field He,z(t ) = t , the Kim model

(H0 = 4, k = 1). Shown for t = 1.7 are tape sheet current densities J and the rescaled bulk current density Dj (left); and the electric field E
(right). Thick black lines—solution for the stack model; thin blue lines—the bulk model solution.

rescaled bulk density, j D, especially in the critical current

region, where the losses occur. According to our computations,

for He,z(t) = 2.5 sin(2πt) the losses per period were 5.74 and

5.95 for the stack and bulk models, respectively; the difference

was 3.5%.

As the transport current or external magnetic field grows,

the subcritical zone shrinks. It is interesting to compare the

moving boundary of this zone for stack and bulk models, scaled

appropriately. Although the stacks in two previous examples

(figures 6 and 7), contain a small number of tapes, 20 and 10,

respectively, the subcritical zones in the two models are very

close, see figure 8.

Let us discuss the magnetization example in more detail.

Since we assume that the tapes are infinitely thin, only

variations of the normal-to-tapes field component, He,z(t),

can induce shielding currents and cause losses. The parallel

magnetic field component, He,x (t), may influence only the

critical current density (4) in the Kim model. In the absence

of transport current, the sheet current densities in the tapes are

odd functions; in every tape the condition Ji (x , t) dx = 0

holds with Ci (t) = 0 (for our choice of the potential Āe).

The situation is similar for the anisotropic bulk model where,

if itr = 0, the condition j (x , z, t) dx = 0 holds with

C(z, t) = 0. Note that for He,x = 0 and zero transport

current the distribution of current in a usual isotropic bulk

superconductor model should also satisfy this condition due to

symmetry. Hence, the anisotropic bulk superconductor model

yields in this case the same distribution of current density as

the isotropic one. The latter problem has been studied before

(see, e.g., [15, 24]). It is known that while the external field is

not too strong the zero-field zone touches the superconductor

cross-section boundary at two points, (0, ± b); it detaches from

the boundary completely as the field grows further. This typical

behavior (see figure 8, right), is not well described by the

solutions [7, 12], being less accurate near the stack top and

bottom and inconvenient, like all front-tracking methods, if the

free boundary topology changes. Note that an adjustment of

the numerical procedure [12] is needed also if the external field

and/or transport current are non-monotone functions of time

(see [13]) because new critical zones appear. Our scheme is

of the free-marching type: it computes the current density, the

critical current zones are then determined as the regions where
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Figure 1. Finite Z stack: a stack of superconducting strips of infinite

length in the y direction, each carrying current I . The overall height

of the stack is 2b.

Figure 2. AC losses in an infinite Z stack, calculated from the

analytic solutions in [6], normalized to the losses in the equivalent

uniform slab, at various current amplitudes I and stack

periodicities D.

for the fields and currents. Both authors noted that in the

limit D a the solutions approach those for a uniform

infinite slab of width 2a carrying an average current density

I / 2aD. In other words, the stack becomes equivalent to

a homogeneous superconducting slab with critical current

density Jc = Ic/ 2aD, where Ic is the critical current in each

tape. We expect that in practical applications the ratio D/ a

will lie in the range 0.01–0.2. In figure 2 we show exact

calculations of the ac losses as in [6], normalized to the ac

losses calculated using the homogeneous approximation, as

a function of D/ a. It can be seen that the homogeneous

approximation is reasonably accurate for small D/ a and large

I / Ic . Specifically, if we restrict ourselves to currents of

amplitude greater than 0.2Ic, this approximation gives better

than 20% accuracy if D/ a < 0.2. From an engineering

perspective this sort of accuracy is usually adequate, especially

since the error is in the right direction (overestimating, rather

than underestimating, the dissipation).

At present there are no analytic solutions available for the

problem of a finite stack of conductors. To initially approach

this problem it makes sense to use an approach that has some

of the features of a homogeneous model. However, our model

must also account, at least approximately, for the screening by

subcritical portions of the superconducting strips. It is likely

that the error in this approach will be similar to that of the

infinite stack; see figure 2. The current density Jy and magnetic

induction B are averaged over a volume D3; that is, we use

only macroscopic values of these quantities. To model the

constraint of constant total current in each tape, we require

that Jy dx = I / D for all |z| < b. In section 2 we use this

anisotropic homogeneous-medium approximation to calculate

the ac losses of a finite Z stack of superconducting tapes. We

discuss and summarize our results in section 3.

2. Anisotropic homogeneous-medium approximation

We consider a sample initially in the virgin (magnetic-flux-

free) state and examine the initial penetration of magnetic flux

as current is applied in the y direction. We anticipate that,

similar to the case of an infinite slab, we will have a region c <

|x | < a with Jy = Jc. For simplicity, we use the Bean [9, 10]

critical state model, in which Jc is independent of the field.

Unlike the behavior in a homogeneous infinite slab, however,

in principle we should allow for c to vary as a function of z.

Further, we cannot assume that Jy = 0 and B = 0 in the region

|x | < c(z), as is the case for the homogeneous infinite slab. It

is known from studies of the critical state model in an isolated

superconducting strip [11, 12] that no significant amount of

magnetic flux can penetrate subcritical portions of the strip (i.e.

Bz = 0 wherever Jy < Jc); this is also true for each of the

strips in the Z stack. On the other hand, a finite Bx is allowed,

since magnetic flux can thread between the superconducting

layers from the ends of the tapes without fully penetrating any

superconductor. This leads to important constraints on B and

Jy = Jm in the middle region |x | < c(z). Since ∇· B = 0,

we must have ∂Bx / ∂x = 0, such that Bx depends only on

z. Ampère’s law requires that µ 0 Jm = ∂Bx / ∂z − ∂Bz / ∂x .

Since the second term on the right-hand side is zero and the

first depends only on z, we conclude that Jm can depend only

on z. Thus the current density Jy as a function of x has a step-

function character, with the values Jm for |x | < c(z) and Jc

for |x | > c(z). To have a fixed total current in each layer we

require

Jm/ Jc = 1− (a/ c)(1− I / Ic). (1)

For finite values of b, the current density Jc in the region

c < x < a contributes, via the Biot–Savart law, a positive

value of Bz(c, 0), while the current density Jc in the region

−a < x < −c contributes a negative value of smaller

magnitude. In order to make Bz(c, 0) = 0, the current density

in the region −c < x < c must obey Jm > 0, so that it makes

a negative contribution to Bz(c, 0), thereby cancelling the net

positive contribution from the currents in the regions for which

c < |x | < a. Since 0 < Jm < Jc and 0 < c < a, we thus

see that c/ a can vary in the range from (1− I / Ic) to 1. In the

limit as b → ∞ , we must find that Jy/ Jc → 0 for |x | < c and

that c/ a → 1 − I / Ic . The theoretical problem thus reduces

to finding a c(z) that yields macroscopic fields consistent with

the above requirements of the critical state. This means that we

must have a region defined by |x | < c(z) where Bz = 0.

Our primary goal in this paper is to calculate the hysteretic

ac losses in a Z stack. Using the above approach, once we
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Figure 5. Surface of a spiraled coated conductor divided by
triangular elements.

conductors are flat in the lateral direction but bent along the

coated conductor axis. The surface of the coated conductor

in the inner layer is defined using the same algorithm as the

outer layer. In this study we defined the gap between coated

conductors as the space between adjacent coated conductors

measured along the lateral direction of the coated conductor,

as shown in figure 6. The gap g is derived as follows:

g = |D sin ϕ − k0 cos ϕ|
π2D2

p2 cos2 ϕ
+ 1

k0 =
pw

π2D2 + p2

(7)

where w is the width of the coated conductor and ϕ is given by

the following equation:

ϕ =
π

N
−
π2D2

p2
tan ϕ. (8)

3.3. Reduction of analysis region

3.3.1. Current density distribution in the coated conductor.

In an infinitely long cable with a spiral structure, the

electromagnetic field is naturally periodic along the cable

axis. The simplest period is the least common multiple of

the spiral pitches in the inner and outer layers. Therefore,

a section of cable with a length equal to the least common

multiple of spiral pitches is sufficient for the calculation of

the entire cable. However, there are shorter periods in a two-

layer cable with a spiral structure. Current distribution in

the coated conductor is determined by the relative position

among the coated conductors. The relative position among

coated conductors in the same layer does not vary along

the coated conductor axis. Thus, in the case of a mono-

layer cable, current distribution is uniform along the coated

conductor axis. A mono-layer cable with a spiral structure

can be analyzed by calculating the current distribution in only

one cable cross section. In a two-layer cable, the influence

of coated conductors in another layer has to be considered.

Figure 6. Definition of the gap between adjacent coated conductors:

(a) a view from the radial direction of the cable and (b) a cross
section normal to the cable axis.

Figure 7. The distributions of the current vector potential of

conductors in the outer layer; the dots in section (II) and stripes in
section (III) are equal to the distribution of the shadow pattern in

section (I).

Figure 7 shows a top view from a radial direction of a two-

layer cable. Clearly, the same relative position is repeated with

a period Lo along the cable axis. The same relative position

appeared in all the coated conductors in the same layer. In

figure 7, sections (I), (II) and (III) have the same current

distribution. Parameters of these periodicities are derived in

the following sections.

3.3.2. The periodicity of the current density distribution along

a coated conductor axis. First, we considered periodicity

along a coated conductor axis. A cross section normal to the

cable axis at x = 0 is shown in figure 8(a) and a cross section

of the other point (x = 0) is shown in figure 8(b). In figure 8,

the x axis is aligned with the cable axis. In figure 8, we focus

5
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Figure 5. Surface of a spiraled coated conductor divided by

triangular elements.

conductors are flat in the lateral direction but bent along the

coated conductor axis. The surface of the coated conductor

in the inner layer is defined using the same algorithm as the

outer layer. In this study we defined the gap between coated

conductors as the space between adjacent coated conductors

measured along the lateral direction of the coated conductor,

as shown in figure 6. The gap g is derived as follows:

g = |D sin ϕ − k0 cos ϕ|
π2D2

p2 cos2 ϕ
+ 1

k0 =
pw

π2D2 + p2

(7)

where w is the width of the coated conductor and ϕ is given by

the following equation:

ϕ =
π

N
−
π2D2

p2
tan ϕ. (8)

3.3. Reduction of analysis region

3.3.1. Current density distribution in the coated conductor.

In an infinitely long cable with a spiral structure, the

electromagnetic field is naturally periodic along the cable

axis. The simplest period is the least common multiple of

the spiral pitches in the inner and outer layers. Therefore,

a section of cable with a length equal to the least common

multiple of spiral pitches is sufficient for the calculation of

the entire cable. However, there are shorter periods in a two-

layer cable with a spiral structure. Current distribution in

the coated conductor is determined by the relative position

among the coated conductors. The relative position among

coated conductors in the same layer does not vary along

the coated conductor axis. Thus, in the case of a mono-

layer cable, current distribution is uniform along the coated

conductor axis. A mono-layer cable with a spiral structure

can be analyzed by calculating the current distribution in only

one cable cross section. In a two-layer cable, the influence

of coated conductors in another layer has to be considered.

Figure 6. Definition of the gap between adjacent coated conductors:

(a) a view from the radial direction of the cable and (b) a cross
section normal to the cable axis.

Figure 7. The distributions of the current vector potential of

conductors in the outer layer; the dots in section (II) and stripes in
section (III) are equal to the distribution of the shadow pattern in

section (I).

Figure 7 shows a top view from a radial direction of a two-

layer cable. Clearly, the same relative position is repeated with

a period Lo along the cable axis. The same relative position

appeared in all the coated conductors in the same layer. In

figure 7, sections (I), (II) and (III) have the same current

distribution. Parameters of these periodicities are derived in

the following sections.

3.3.2. The periodicity of the current density distribution along

a coated conductor axis. First, we considered periodicity

along a coated conductor axis. A cross section normal to the

cable axis at x = 0 is shown in figure 8(a) and a cross section

of the other point (x = 0) is shown in figure 8(b). In figure 8,

the x axis is aligned with the cable axis. In figure 8, we focus
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Figure 3. Thin strip approximation of the coated conductor; Jx and

Jy are current densities and T is the current vector potential.

follows:

∇ × (ρ∇ × T1) · n 1 +
µ 0ts

4π

∂

∂t

×
source points Se

(∇ × T2) × r · n 2

r 3
dS = 0. (2)

Here, T1 and T2 are the current vector potentials at the field

point and source point of the self-magnetic field, respectively;

n 1 and n 2 are the normal vectors of the conductor’s wide face

at the field point and source point, respectively; r is the vector

from the source point to the field point; ρ is the resistivity

and ts is the thickness of the superconductor layer in coated

conductors. To calculate (2), we considered two coordinate

systems: (x1, y1, z1), which is fixed at the section of each

field point (the unit vectors in the x1, y1 and z1 directions are

i 1, j 1 and k1, respectively); and (x2, y2, z2), which is fixed

at the element of the source point (the unit vectors in the x2,

y2 and z2 directions are i 2, j 2 and k2, respectively). The

vectors k1 and k2 are normal to the conductor’s wide face of

the field point and source point, respectively. Since the current

density component normal to the wide face of the conductor is

neglected, only the magnetic field component normal to the

wide face is considered. Thus, T has a component normal

to the conductor’s wide face alone, as shown in figure 3.

Therefore, the problem is reduced to two dimensions. The

scalar variable T on a plane parallel to the coated conductor’s

wide face is

∂

∂x1

ρ
∂T1

∂x1

+
∂

∂y1

ρ
∂T1

∂y1

+
µ 0ts

4π

∂

∂t

×
source point e Se

αe

r3
dS = 0 (3)

where αe is derived as follows:

αe =
∂T2

∂y2

i 2 −
∂T2

∂x2

j 2 · (r × k1). (4)

The superconducting property is given by the power law

characteristic:

E = E0

J

Jc

n

(5)

where n is fixed at 30 and E0 is fixed at 10− 4 V m− 1. The

equivalent resistivity of the coated conductor ρ is then derived

from the following equation: ρ = E / J . Constitutive equation

was given by Ohm’s law using the equivalent resistivity.

Equation (3) was discretized by Galerkin’s method using a

linear interpolation formula and solved using the constitutive

equation.

Figure 4. Orbit of coated conductors with a spiral structure in a

two-layer cable.

3.2. The spiral structure of a two-layer cable

The spiral structure of a two-layer cable is represented by spiral

pitches of the inner and outer layers pi and po( pi > po),

numbers of coated conductors in the inner and outer layers Ni

and No (No > Ni), and diameters of the inner and outer layers

Di and Do(Do > Di).

First, we defined the curved centerline of the coated

conductor in a cable. The centerline is parameterized using

the real number u and positive integer m (1 m Ni or No):

x = u y =
D

2
cos

2πu

p
+

2πm

N

z =
D

2
sin

2πu

p
+

2πm

N

(6)

where p = pi or po, N = Ni or No and D = Di or Do. The

x axis is similarly oriented to the cable axis. The cable cross

section is on the y–z plane. The defined curved centerlines are

shown in figure 4.

Second, the surface of the coated conductor in the outer

layer was then defined as follows. Figure 5 illustrates short

sections of the wide face of coated conductors in the inner

and outer layers of the cable. We defined a straight lateral

line segment on the coated conductor (shown in figure 5) as a

line segment normal to the curved centerline and tangent to the

outer cylinder. This cylinder is defined as the cylinder whose

central axis aligns to the x axis and whose diameter is the same

as the diameter of the spiral structure. The lengths of the line

segments equal the width of the coated conductor. These line

segments are always straight, but their orientations rotate with

the coated conductor axis. The space between adjacent lateral

lines is divided by triangular elements, which make up the wide

face of the coated conductor, as shown in figure 5. Coated
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Figure 1. Schematics of analysis region of the two-layer cable:

(a) 2D model (on plane) and (b) 3D model (in box).

analysis performed on a cross section of the cable [7–11],

as shown in figure 1(a). Furthermore, theoretical equations

have been derived [12, 13]. However, these methods are

aimed at analyzing straight-coated conductors along their axes

and only take into consideration the geometry of the cross

section; the current density component parallel to the cross

section is neglected. Thus, while performing 2D analysis

or theoretical equations [14], the ac losses of cables with

structures such as spiral structures along their axis can be

calculated only approximately. There are some reports of

ac losses in cables that are composed of BISCCO tapes and

have spiral structures [15–17]. In these reports, a layer

composed of BISSCO tapes is approximated by a cylindrical

shell, and the gaps between BSCCO tapes are neglected.

In general, a large circumferential component of magnetic

flux density parallel to the conductor face is generated in

the cable. The ac loss of thick BISSCO tapes in the cable

is dominated by the circumferential magnetic flux density

component penetrating from the tape face, and the influence

of the normal magnetic flux density component is negligible.

Therefore, the cylindrical shell approximation is effective

when analyzing the BSCCO cable. However, since the

thickness of the superconductor layer in a coated conductor

is considerably less than the width, the ac loss in the coated

conductor is dominated by the magnetic flux density normal to

the conductor face, and the angular geometry effect and the gap

effect in the cables (explained in the following section) are not

negligible. As far as the mono-layer cable composed of coated

conductors, ac loss was numerically calculated considering the

spiral structure, gap effect and angular geometry effect [18].

However, in principle, this method cannot calculate the ac loss

of multi-layer cables in which each layer has different spiral

pitch. With this background, the objective of this study is as

follows:

(1) To develop 3D analysis of a two-layer cable considering

both the spiral structure and the gap effect, as shown in

figure 1(b).

(2) To determine the current density distribution and the ac

loss distribution along the cable axis.

In section 2, the mechanisms for generating a normal

magnetic flux density component in two-layer cables is

described. In section 3, 3D modeling of a two-layer cable

with a spiral structure is described. In section 4, specifications

of the two-layer cables are given, and the results of the

Table 1. The influence of magnetic flux density components on the
ac loss of the inner and outer layers.

Self-magnetic

flux

External magnetic flux

Inner layer Axial and

circumferential
component

Axial component

generated by outer
layer

Outer layer Circumferential

component generated

by inner layer

electromagnetic field analysis using the developed model in

this paper are described. The conclusions are given in

section 5.

2. The mechanisms for generating a normal magnetic

flux density component in a two-layer cable with a
spiral structure

2.1. Circumferential and axial components of magnetic flux

density in the cable with a spiral structure

In the cable with a spiral structure, magnetic flux density

contains a circumferential component Bθ and an axial

component Ba. Bθ surrounds the surface of the layer, while

Ba is parallel to the cable axis and flows inside the layer.

Coated conductors in the inner layer are exposed to a self-

magnetic flux density, which consists of Bθ and Ba generated

by currents in the inner layer, and an external magnetic

flux density which consists of Ba generated by currents in

the outer layer. In the outer layer coated conductors are

exposed to the self-magnetic flux density, which consists of

Bθ and Ba generated by currents in the outer layer, and the

external magnetic flux density which consists of Bθ generated

by currents in the inner layer. These magnetic flux density

components are summarized in table 1. In the following

sections, factors influencing the self-and external magnetic flux

density components are considered individually. It should

be noted that ac losses in coated conductors are generated

predominantly by the magnetic flux density component normal

to the superconductor layer. This is because the ac loss

generated by the magnetic flux density component parallel to

the conductor’s extremely thin superconductor layer is very

small. Therefore, the mechanism of the generation of the

normal magnetic flux density component, which dominates the

ac loss of coated conductors, is considered in the following

sections. It should be noted that the explanation of the

penetration process of the magnetic flux into a superconductor

is not the intention.

2.2. The effect of self-magnetic flux density on ac loss

Generation of the normal magnetic flux density component

from the self-magnetic flux density is attributed to two effects:

the gap effect and the angular geometry effect (the angular

geometry effect is similar to the polygonal effect [19]).

Self-magnetic fluxes surrounding a layer circumferentially

(circumferential magnetic flux) and penetrating inside the

2
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Figure 5. Surface of a spiraled coated conductor divided by

triangular elements.

conductors are flat in the lateral direction but bent along the

coated conductor axis. The surface of the coated conductor

in the inner layer is defined using the same algorithm as the

outer layer. In this study we defined the gap between coated

conductors as the space between adjacent coated conductors

measured along the lateral direction of the coated conductor,

as shown in figure 6. The gap g is derived as follows:

g = |D sin ϕ − k0 cos ϕ|
π2D2

p2 cos2 ϕ
+ 1

k0 =
pw

π2D2 + p2

(7)

where w is the width of the coated conductor and ϕ is given by

the following equation:

ϕ =
π

N
−
π2D2

p2
tan ϕ. (8)

3.3. Reduction of analysis region

3.3.1. Current density distribution in the coated conductor.

In an infinitely long cable with a spiral structure, the

electromagnetic field is naturally periodic along the cable

axis. The simplest period is the least common multiple of

the spiral pitches in the inner and outer layers. Therefore,

a section of cable with a length equal to the least common

multiple of spiral pitches is sufficient for the calculation of

the entire cable. However, there are shorter periods in a two-

layer cable with a spiral structure. Current distribution in

the coated conductor is determined by the relative position

among the coated conductors. The relative position among

coated conductors in the same layer does not vary along

the coated conductor axis. Thus, in the case of a mono-

layer cable, current distribution is uniform along the coated

conductor axis. A mono-layer cable with a spiral structure

can be analyzed by calculating the current distribution in only

one cable cross section. In a two-layer cable, the influence

of coated conductors in another layer has to be considered.

Figure 6. Definition of the gap between adjacent coated conductors:

(a) a view from the radial direction of the cable and (b) a cross
section normal to the cable axis.

Figure 7. The distributions of the current vector potential of

conductors in the outer layer; the dots in section (II) and stripes in
section (III) are equal to the distribution of the shadow pattern in

section (I).

Figure 7 shows a top view from a radial direction of a two-

layer cable. Clearly, the same relative position is repeated with

a period Lo along the cable axis. The same relative position

appeared in all the coated conductors in the same layer. In

figure 7, sections (I), (II) and (III) have the same current

distribution. Parameters of these periodicities are derived in

the following sections.

3.3.2. The periodicity of the current density distribution along

a coated conductor axis. First, we considered periodicity

along a coated conductor axis. A cross section normal to the

cable axis at x = 0 is shown in figure 8(a) and a cross section

of the other point (x = 0) is shown in figure 8(b). In figure 8,

the x axis is aligned with the cable axis. In figure 8, we focus
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Figure 3. Thin strip approximation of the coated conductor; Jx and

Jy are current densities and T is the current vector potential.

follows:

∇ × (ρ∇ × T1) · n 1 +
µ 0ts

4π

∂

∂t

×
source points Se

(∇ × T2) × r · n 2

r 3
dS = 0. (2)

Here, T1 and T2 are the current vector potentials at the field

point and source point of the self-magnetic field, respectively;

n 1 and n 2 are the normal vectors of the conductor’s wide face

at the field point and source point, respectively; r is the vector

from the source point to the field point; ρ is the resistivity

and ts is the thickness of the superconductor layer in coated

conductors. To calculate (2), we considered two coordinate

systems: (x1, y1, z1), which is fixed at the section of each

field point (the unit vectors in the x1, y1 and z1 directions are

i 1, j 1 and k1, respectively); and (x2, y2, z2), which is fixed

at the element of the source point (the unit vectors in the x2,

y2 and z2 directions are i 2, j 2 and k2, respectively). The

vectors k1 and k2 are normal to the conductor’s wide face of

the field point and source point, respectively. Since the current

density component normal to the wide face of the conductor is

neglected, only the magnetic field component normal to the

wide face is considered. Thus, T has a component normal

to the conductor’s wide face alone, as shown in figure 3.

Therefore, the problem is reduced to two dimensions. The

scalar variable T on a plane parallel to the coated conductor’s

wide face is

∂

∂x1

ρ
∂T1

∂x1

+
∂

∂y1

ρ
∂T1

∂y1

+
µ 0ts

4π

∂

∂t

×
source point e Se

αe

r3
dS = 0 (3)

where αe is derived as follows:

αe =
∂T2

∂y2

i 2 −
∂T2

∂x2

j 2 · (r × k1). (4)

The superconducting property is given by the power law

characteristic:

E = E0

J

Jc

n

(5)

where n is fixed at 30 and E0 is fixed at 10− 4 V m− 1. The

equivalent resistivity of the coated conductor ρ is then derived

from the following equation: ρ = E / J . Constitutive equation

was given by Ohm’s law using the equivalent resistivity.

Equation (3) was discretized by Galerkin’s method using a

linear interpolation formula and solved using the constitutive

equation.

Figure 4. Orbit of coated conductors with a spiral structure in a

two-layer cable.

3.2. The spiral structure of a two-layer cable

The spiral structure of a two-layer cable is represented by spiral

pitches of the inner and outer layers pi and po( pi > po),

numbers of coated conductors in the inner and outer layers Ni

and No (No > Ni), and diameters of the inner and outer layers

Di and Do(Do > Di).

First, we defined the curved centerline of the coated

conductor in a cable. The centerline is parameterized using

the real number u and positive integer m (1 m Ni or No):

x = u y =
D

2
cos

2πu

p
+

2πm

N

z =
D

2
sin

2πu

p
+

2πm

N

(6)

where p = pi or po, N = Ni or No and D = Di or Do. The

x axis is similarly oriented to the cable axis. The cable cross

section is on the y–z plane. The defined curved centerlines are

shown in figure 4.

Second, the surface of the coated conductor in the outer

layer was then defined as follows. Figure 5 illustrates short

sections of the wide face of coated conductors in the inner

and outer layers of the cable. We defined a straight lateral

line segment on the coated conductor (shown in figure 5) as a

line segment normal to the curved centerline and tangent to the

outer cylinder. This cylinder is defined as the cylinder whose

central axis aligns to the x axis and whose diameter is the same

as the diameter of the spiral structure. The lengths of the line

segments equal the width of the coated conductor. These line

segments are always straight, but their orientations rotate with

the coated conductor axis. The space between adjacent lateral

lines is divided by triangular elements, which make up the wide

face of the coated conductor, as shown in figure 5. Coated

4
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Figure 14. Distributions of current line in the inner and outer layers

of cable F.

Figure 17 shows the ac loss power density distributions

along the coated conductor axis of case 2. In addition, the ac

loss power density in the coated conductor at a corresponding

relative position calculated by the 2D model is indicated. The

corresponding relative position in the 3D and 2D models are

defined as follows. When we focused on a coated conductor

in a cable with a spiral structure, the relative position among

coated conductors varied along the cable axis, as shown in

figure 10(a). However, when we focus on a cross section in

the cable, the relative position varies along the circumferential

direction. This is due to the numbers of coated conductors in

the inner and outer layers being different (17/18) as shown in

figure 10(b). A position marked ‘1’ in figure 10(a) corresponds

to a position marked ‘1’ in figure 10(b). AC loss power

density varies along the coated conductor axis due to the

current density distribution along the axis. In a tape-on-tape

cross section, where coated conductors in the inner and outer

Figure 15. Time variation of the normal magnetic flux density
component (dBn/ dt) in coated conductors. (a) Coated conductor in

the inner layer and (b) coated conductor in the outer layer.

layers are set parallel to each other, ac loss is small because

magnetic flux can flow parallel, comparatively speaking, to

the coated conductor face. However, in a tape-on-gap cross

section, where coated conductors in the inner and outer layers

are not set parallel, a normal magnetic flux density component

is generated naturally, and ac loss is large.

In cables such as H with a long spiral pitch, the ac loss

power density in coated conductors calculated by the 2D model

is close to that calculated by the 3D model. Since our models

consisted of 17 coated conductors in the inner layer and 18

coated conductors in the outer layer, a cross section includes

various relative positions such as tape-on-tape and tape-on-gap.

Thus, we can sum the ac losses of all coated conductors in

the 2D model, thereby allowing the calculation of the average

ac loss of the entire cable. In the cables with a long spiral

pitch, ac losses in the inner and outer layers and in the entire

cable as calculated by the 2D model, are shown in table 5.

These figures almost agree with the ac losses calculated by

the 3D model. However, in cables with a short spiral pitch

ac loss cannot be calculated correctly by the 2D model. This is

due to the large differences between the ac loss power density

distributions calculated by the two models.

4.2.5. Validity of the model. The ac losses calculated by using

the developed 3D model were compared with the measured

ac losses for a two-layer cable. The calculated ac losses

agreed reasonably with the measured ac losses. However, a

conventional 2D model could be applied reasonably to the

cable due to its long spiral pitch. Such comparisons for a cable

with a short spiral pitch are expected in future.

5. Conclusion

By considering the periodicity of the current density

distribution along the axis of the coated conductor and
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Figure 14. Distributions of current line in the inner and outer layers

of cable F.

Figure 17 shows the ac loss power density distributions

along the coated conductor axis of case 2. In addition, the ac

loss power density in the coated conductor at a corresponding

relative position calculated by the 2D model is indicated. The

corresponding relative position in the 3D and 2D models are

defined as follows. When we focused on a coated conductor

in a cable with a spiral structure, the relative position among

coated conductors varied along the cable axis, as shown in

figure 10(a). However, when we focus on a cross section in

the cable, the relative position varies along the circumferential

direction. This is due to the numbers of coated conductors in

the inner and outer layers being different (17/18) as shown in

figure 10(b). A position marked ‘1’ in figure 10(a) corresponds

to a position marked ‘1’ in figure 10(b). AC loss power

density varies along the coated conductor axis due to the

current density distribution along the axis. In a tape-on-tape

cross section, where coated conductors in the inner and outer

Figure 15. Time variation of the normal magnetic flux density

component (dBn/ dt ) in coated conductors. (a) Coated conductor in
the inner layer and (b) coated conductor in the outer layer.

layers are set parallel to each other, ac loss is small because

magnetic flux can flow parallel, comparatively speaking, to

the coated conductor face. However, in a tape-on-gap cross

section, where coated conductors in the inner and outer layers

are not set parallel, a normal magnetic flux density component

is generated naturally, and ac loss is large.

In cables such as H with a long spiral pitch, the ac loss

power density in coated conductors calculated by the 2D model

is close to that calculated by the 3D model. Since our models

consisted of 17 coated conductors in the inner layer and 18

coated conductors in the outer layer, a cross section includes

various relative positions such as tape-on-tape and tape-on-gap.

Thus, we can sum the ac losses of all coated conductors in

the 2D model, thereby allowing the calculation of the average

ac loss of the entire cable. In the cables with a long spiral

pitch, ac losses in the inner and outer layers and in the entire

cable as calculated by the 2D model, are shown in table 5.

These figures almost agree with the ac losses calculated by

the 3D model. However, in cables with a short spiral pitch

ac loss cannot be calculated correctly by the 2D model. This is

due to the large differences between the ac loss power density

distributions calculated by the two models.

4.2.5. Validity of the model. The ac losses calculated by using

the developed 3D model were compared with the measured

ac losses for a two-layer cable. The calculated ac losses

agreed reasonably with the measured ac losses. However, a

conventional 2D model could be applied reasonably to the

cable due to its long spiral pitch. Such comparisons for a cable

with a short spiral pitch are expected in future.

5. Conclusion

By considering the periodicity of the current density

distribution along the axis of the coated conductor and
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Periodic conditions 
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Full 3-D model of a Roebel 
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Identification of “critical” zones (highest dissipation) 

Full 3-D model of a Roebel 

CHATS-AS Workshop, Cambridge, MA, October 9-11, 2013 
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Full 3-D model of a Roebel 
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3-D FEM with anisotropic conductivity 

No gaps between tapes 

3-D model for a multi-layer HTS power cable 

CHATS-AS Workshop, Cambridge, MA, October 9-11, 2013 

D. Miyagi et al., IEEE Trans. Superc.  40 (2) 908-911, 2004 

 

D. Miyagi et al., IEEE Trans. Magn. 16 (2) 1614-1617, 2006 

 

 A-V formulation FEM 
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Double-helix geometry 

3-D model for cable made of twisted wires 

CHATS-AS Workshop, Cambridge, MA, October 9-11, 2013 

H. Hoshimoto et al. IEEE Trans. Magn. 36 (4) 1205-1208, 2000  

 

 

A-V formulation FEM 
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Influence of the aspect ratio on the onset of coupling 

3-D models of coupling between SC filaments 

CHATS-AS Workshop, Cambridge, MA, October 9-11, 2013 

T-Ω formulation FEM 
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3-D simulation of a CICC 

CHATS-AS Workshop, Cambridge, MA, October 9-11, 2013 

Details in Victor Zermeno’s talk 

J/Jc 

A-V formulation CSM 

(Campbell’s method) 
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Many numerical models have been developed in the past few years 

2-D models have reached a mature status 

Refined HTS description (Jc(B), Jc(x,y))  

Structured conductors (filaments, stabilizer, non-linear magnetic materials) 

Complex devices (hundreds of tapes) 

Can be adapted to solve 3-D problems 

Performance still to be improved for device optimization 

3-D models are far behind 

Mostly proof-of-concept status 

Complexity and size of the problem rapidly increases 

CAD-FEM-SOLVERS more susceptible to problems 

Scarcely applied for simulating realistic devices 

Are they really necessary? 

 

Summary 

CHATS-AS Workshop, Cambridge, MA, October 9-11, 2013 
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Review paper on AC loss computation 

32 pages, 333 references 

IEEE Transactions on Applied Superconductivity 

Pre-print available at http://arxiv.org/pdf/1306.6251.pdf 

Summary 

CHATS-AS Workshop, Cambridge, MA, October 9-11, 2013 


