

Les Journées Thématiques AFF-CCS au CERN Cryogénie et Supraconductivité pour le LHC et ses détecteurs

Organisées par l'Association Française du Froid Commission de Cryogénie et de Supraconductivité

LA CRYOGENIE DES DETECTEURS DU LHC

Giorgio Passardi 10 avril 2008

Large Hadron Collider

CMS

ATLAS

COLLABORATION INTERNATIONALE

Cryogénie hélium CEA-SACLAY, INFN, KEK et RAL

Cryogénie argon

LAL, BNL, CEA, LPSC et NTNU

CERN COLLEGUES

CMS Solenoid

ATLAS Barrel Toroid

ATLAS End-Cap Toroid

ATLAS Central Solenoid

Données aimants

ATLAS

- Trois grands toroides (Barrel, 2 End-Caps)
- Masse froide à 4.5 K: 680 tonnes
- Courant 20.5 kA, énergie stockée 1.6 GJ
- Solénoïde Centrale
- Courant 7.6 kA, 2 T, énergie stockée 39 MJ
- Masse froide à 4.5 K: 5.5 tonnes

CMS

• Grand solénoïde: masse froide à 4.5 K: 220 tonnes Courant 19.5 kA, 4 T, énergie stockée 2.6 GJ

Températures après décharge rapide < 80 K

Principes conceptuels et spécifications du système cryogénique pour les aimants(1)

Cryogénie interne

- Refroidissement indirecte par tubes en contact thermique avec la masse froide
- Circuits en parallèle:
- 2x4/bobine x 8 = 64 pour toroides ATLAS avec orifices entrée circuit, 86 pour CMS, 2 pour CS ATLAS,
- Ecoulement hélium diphasique à 4.5 K
- Débit forcé par pompe (toroides) ou thermosiphon (solénoïdes)
- Débit spécifique pour toroides >4 g/s·cm²
- Concentration massique gaz sortie circuits << 10%
- Ecrans à 60 K par circulation forcé (réfrigérateurs) de gaz He

Principes conceptuels et spécifications du système cryogénique pour les aimants (2)

Charges thermiques		statiques	dynamiques	à 4.5 K
•	Barrel toroide:	8x82 W	350 W	(2 hr)
•	End-Cap toroide:	2×200 W	2×100 W	(2 hr)
•	ATLAS solénoïde:	50 W	20 W	(20 min)
•	CMS solénoïde:	160 W	360 W	(4 hr)

Cryogénie externe

- Mise en froid aimants entre 300 K à 100 K en utilisant LN2, de 100 K à 4.5 K en utilisant les turbines
- Temps de mise en froid<1 mois, écart max. températures<30 K
- Temps de récupération décharge rapide <3 jours
- Pression maximum pendant décharge rapide < 20 bar
- Un réfrigérateur pour CMS de 1.5 kW @ 4.5 K
- Deux réfrigérateur pour ATLAS de: 6 kW @ 4.5 K et 20 kW @ 60K

Flow scheme of CMS He refrigerator

Flow scheme of ATLAS He refrigerators

PCS of ATLAS Toroids

PCS of ATLAS Central Solenoid

ATLAS Solenoid

CMS thermosyphon flow

CMS on site

Self-sustained circulation with the heat deposited

(on site, at the beginning of a slow dump with dynamic heat load)

LHe centrifugal pump performance

Figure 3. Characteristic curves and efficiencies of the pump with the impeller diameter 112.5 mm.

Static heat load of CMS Solenoid

Natural warm-up of CMS Solenoid

Static heat load Barrel Toroid

Natural warm-up of Barrel Toroid

Static heat load of Central Solenoid

ATLAS: CS

- Measurement of total loss was done during thermosyphon operation mode with disconnected refrigerator and looking at the level/time change in the control dewar
- Results:
- 17 Watts for the solenoid and the chimney;
- below 10 Watts for the dewar.

Dynamic heat load of CMS Solenoid

Temperature increase ~ 0.28 K

Dynamic heat load of Barrel Toroid

LHe vapor mass flow on the phase separator is increased due to the higher heat load

Dynamic heat load of Barrel Toroid

Level of LHe is reduced due to the higher vaporization during slow discharge

Charge dynamique du Solénoïde Centrale

Charge thermique par courants induites: environ 25 W

Méthodes de mesure:

- Pendant charge à 6 A/s baisse du chauffage dans le séparateur de phase a niveau constant (refroidissement en circuit forcé par réfrigérateur)
- · Mesure de débit à température ambiante

Bilan de la réfrigération du solénoïde de CMS

- Charges thermiques à 4.5 K:
 180 W (statique) + 50 W (interfaces) +360 W (dynamique)
 = 590 W (réfrigérateur 920 W mesuré, 800 W spécifié)
- Charge en liquéfaction:
 2.6 g/s (réfrigérateur 4 g/s mesuré, 4 g/s spécifié)
- Charge thermique des écrans à 60 K:
 1100 W* (réfrigérateur 4400 W mesuré, 4500 spécifié)
 - * mesure préliminaire

Bilan des charges thermiques statiques ATLAS

- Charges thermiques à l'interface de la PCS (BT seul):
 1400 W = 590 W (BT) + 650 W (pompe) + 160 W
 (anneau cryogénique+cryostats emmenées de courant +
 systèmes de sécurité+ lignes de transfert + boite à
 vannes)
- Puissance du réfrigérateur à l'interface avec la PCS:
 3000 W + 13 g/s de liquéfaction
- · Puissance nécessaire:

```
1400 W + 30 W+ 300 W**x2 (End-Caps)
```

= 2030 W + 11 q/s

** mesure préliminaire

Charges thermiques des écrans ATLAS et CMS

ATLAS

Barrel toroide

- Pour chacun des cryostats dans la zone de test en surface, moyenne 800 W x 8 = 6400 W (6600 estimés)
- Le total de la charge thermique des écrans BT a aussi été mesuré dans la caverne = 5900 W

End-Cap toroide

Mesuré dans la caverne = 2x1300 W* (2x2200 W estimés)

Solénoïde centrale

- Pas de mesure (500 W estimés)
- Total: 6400 W+2600 W+500 W+1900 W (estimation interfaces)
 = 11400 W (20 kW de réfrigération)

CMS solénoïde

• 1100 W* (3000 W estimés)

* mesures préliminaires

Cooldown of CMS Solenoid

1.5 kW @ 4.5 K refrigerator used

DT< 22K

Cooling Time ca. 22 days

Cooldown of ATLAS Barrel Toroid

Cooldown of ATLAS End-Cap Toroid

Cooldown of ATLAS Central Solenoid

Shield Refrigerator (SR) & Main Refrigerator (MR) used

SR for shield MR for CM

Fast energy discharge of CMS Solenoid

Temperature rise during fast discharge of BT

Temperature recovery after fast discharge of BT

Pressure rise during fast discharge of BT

Temperature rise during fast discharge of CS

Pressure rise during fast discharge of CS

Liquid argon Barrel Calorimeter

■ D: 4.3 m; L:6.5 m

• Weight: 120 t

■ Argon volume: 40 m³

Electromagnetic barrel half-wheel

Cryostat cold wall
External ring
Cooling loop
Internal ring
Cryostat rail

Presampler sector
(in its housing)
Presampler modules

Liquid argon End-Cap calorimeter

Hadronic detectors detector •D: 4.3 m; L: 3 m Weight: 219 t Ar volume: 19 m³ plugs Forward detectors cold vessel cooling pipes, signal feedthrough

Calorimeters are highly complicated composite structures made of copper, lead, stainless-steel and glass-epoxy... placed in aluminium cryostats

Liquid argon ATLAS calorimeters

Principes conceptuels et spécifications du système cryogénique pour les calorimètres (1)

Cryogénie interne

- Pas de formation de gaz. Liquide sous-refroidi par pression hydrostatique et échangeurs. T à 88K
- Gradient de température à travers le bain < 0.7 K
- Pureté argon liquide < 2ppm 02 équivalent
- Refroidissement par échangeurs parallèles immergés:
- 6 (Barrel)+2x2 (End-Caps)+3 (vases d'expansion)=13 échangeurs
- Ecoulement azote diphasique. Débit forcé par pompe 200 g/s
- Ecart maximum de température entre limites strictes pendant mise en froid (<10...40 K): 7 critères pour Barrel, 11 critères pour End-Caps

Principes conceptuels et spécifications du système cryogénique pour les calorimètres (2)

Cryogénie externe

- Calorimètres à < 100 K pendant 10 ans sans interruption
- Temps de mise en froid pas critique
- · Système cryogénique et services redondants
- Possibilité de déplacer longitudinalement les cryostats End-Cap de 12 mètres avec cryogénie opérationnelle

LAr calorimeter principle cooling scheme

Cooldown of Barrel calorimeter

Cooldown of End-Cap calorimeter

Les Journées Thématiques AFF-CCS, CERN, Genève, Suisse 48

G.Passardi, 10 avril 2008

Bilan des charges thermiques

• Cryostats:

Barrel

2 kW

50% feedthroughs

End-Cap

2.1 kW X 2 estimé

1.9 kW | 2.5 kW x 2 mesuré en surface*

25% electronique

Total:

12.0 kW estimé

installation finale

11.5 kW mesuré

*Avec corrections pour charges externes

Steady state conditions Barrel calorimeter

- Liquid argon bath subcooled by 3.5 K to 7.0 K
- Temperature uniformity over detector volume: 70 mK RMS
- Temperature stability: 10 mK
- Argon purity: between 0.1 and 0.3 ppm of O2-equivalent

Stability in days since 1st january

Uninterrupted functioning for 10 years (1)

Redundancies:

• LN_2 pumps (x3)

refrigerator + LN₂ supply tanks (x2)

all essential devices on backed-up electrical power system:

-EDF/EOS network

-diesel generators

-UPS

 compressed air and cooling water backed up

Uninterrupted functioning over 10 years (2)

12 meter longitudinal movement of the end-cap cryostats:

Cryogenic lines between expansion vessel and cryostat Transfer-line supplying ${\rm LN_2}$ to the heat exchangers Signal cables and compressed air pipes

designed to follow this movement

Système de guidage des TLs des aimants End-Cap

Uninterrupted functioning over 10 years (3)

- filled with I Arran 21 OF 2007
- filled with LAr on 21-05-2007

CONCLUSION

- La cryogénie de CMS et ATLAS est dans sa phase finale
- Les résultats obtenus sont conformes aux attentes
- La cryogénie des trois calorimètres en parallèle a fonctionnée pendant plusieurs mois
- L'aimant de CMS est refroidi de nouveau à 4.5 K après son transfert avec le système cryogénique dans la caverne
- Les aimants d'ATLAS (trois toroides actuellement à 50 K + solénoïde) ont été testé séparément dans la caverne et leur test dans la configuration finale est imminent