

Les Journées Thématiques AFF-CCS au CERN Cryogénie et Supraconductivité pour le LHC et ses détecteurs

Organisées par l'Association Française du Froid Commission de Cryogénie et de Supraconductivité

Transfert de chaleur dans les bobines supraconductrices

Bertrand Baudouy 10 avril 2008

Sommaire

• Le Refroidissement des aimants supraconducteurs

- » La stabilité thermique des aimants
- » Les différents types d'aimant
- » Les modes de refroidissement

• Transfert de chaleur dans les aimants d'accélérateur du LHC

- » Mode de refroidissement des aimants d'accélérateur
- » Les transferts de chaleur dans les aimants du LHC
- » Les nouveaux systèmes d'isolation électrique

• Transfert de chaleur dans l'aimant du détecteur CMS

- » Mode de refroidissement des aimants de détecteur
- » Refroidissement par écoulement « thermosiphon » en hélium
- » Le refroidissement de l'aimant de CMS

Transfert de chaleur dans les bobines supraconductrices

- Le Refroidissement des aimants supraconducteurs
 - » La stabilité thermique des aimants
 - » Les différents types d'aimant du point de vue de la cryogénie
 - » Les modes de refroidissement
- Transfert de chaleur dans les aimants d'accélérateur du LHC
 - » Mode de refroidissement des aimants d'accélérateur
 - » Les transferts de chaleur dans les aimants du LHC
 - » Les nouveaux systèmes d'isolation électrique
- Transfert de chaleur dans l'aimant du détecteur CMS
 - » Mode de refroidissement des aimants de détecteur
 - » Refroidissement par écoulement « thermosiphon » en hélium
 - » Le refroidissement de l'aimant de CMS

La stabilité thermique des aimants

Maintenir la température du bobinage inférieure à Tc (H, I)

- Vis-à-vis des apports permanents (Q_p)
 - » Conduction par les aménées de courant, éléments de structure et support
 - » Dissipation volumique comme « Pertes faisceau » (DC) ou « AC losses » (AC)
 - » Rayonnement

• Vis-à-vis des perturbations transitoires (Q_t)

- » Transition Supra/Norm localisée
- » « Quench » de l'aimant
- » Déplacement de conducteur, crac de résine, ...

• Avec une puissance de réfrigération (Q_R)

- » Q_R=h.(T-T_b).p/A avec fluides cryogéniques
- » Q_R=puissance du cryogénérateur

• En fonctionnement, à H (T) et J (A/m²) fixés,

- » Le supraconducteur employé impose T_c, C et k
- » Apports thermiques estimés : Q_p et Q_t (W)
- » Un géométrie par construction: A (m²), périmètre mouillé, p (m)
- » Tb et le mode de refroidissement (h) pour T<T_c

• Le transfert de chaleur entre la bobine et la source de froid détermine la marge en température

Les Journées Thématiques AFF-CCS, CERN, Genève, Suisse

Critical Surface of a Superconductor

Les différents types d'aimant

- Aimant « sec » Pas de contact en le fluide cryogénique et le conducteur
 - Conduction dans l'aimant **»**
 - Bain ou écoulement d'un fluide externe au bobinage (CMS, ATLAS, ...) ou Cryogénérateur >>

- Aimant « mouillé » *Contact entre le fluide cryogénique et le conducteur*
 - En bain : Fluide monophasique stagnant He II (Tore Supra, Iseult, LHC, 45T NHMFL) **»**
 - En écoulement : Fluide monophasique HeS (W7X, ITER, SIS, ...) >>

Aimant « cryostable » ou « adiabatique »

- Cryostable quelque soit le scénario $Q_R > Q_p + Q_t$ (Iseult, Tore Supra, ...) Adiabatique : lors d'un quench, l'aimant ne dialogue pas avec la source froide (**CMS**, ...) >>

Les modes de refroidissement : les bains

• Bain saturé (P=1 Atm et Tsat)

- » Simplicité pour la conception et fonctionnement de la cryogénie
- » Refroidissement par chaleur latente de vaporisation T=cste 77 I
- » Refroidissement non uniforme dû à la formation de vapeur $_{,300 \text{ K}}$
- » ΔP important lors de quench dû au volume de fluide cryogénique
- » Transfer de chaleur en ébullition nucléée
 - He : $q_{max} \approx 10^4 \text{ W/m}^2$ for $\Delta T \approx 1 \text{ K}$)
- » Grand aimant unique ou système compact (He ~1 W/m)

• He II pressurisé (T<1,9 K et P= 1 Atm)

- » Design et opération de la cryogénie couteux et plus compliqués
- » Échangeur de chaleur He II sat / He II p
- » Optimisation des sections de transport de la chaleur entre le câble et la source froide
- » Transfert de chaleur (k≈10⁵ W/m.K pour ∆T≈0,3 K et He I k≈0.02 W/m.K)

6

- Résistance d'interface entre solide et He II (Cu $\rm R_k=3~10^{-4}~K.m^2/W$ et Kapton $\rm R_k=~10^{-3}~K.m^2/W)$
- $\,$ > LHC $\sim\!1$ W/m, concept pouvant atteindre $\sim\!10$ W/m avec optimisation des sections de transfert

Les modes de refroidissement : les écoulements

• Écoulement en convection forcée monophasique

- » Opération nécessite des systèmes de pressurisation et un refroidissement périodique
- » Conception simple car calcul des transferts convectifs et Δp par corrélations conventionnelles
- » Transfert : Utilisation de la chaleur sensible au prix d'une augmentation de T
 - Hélium supercritique (~0,1 kg/s et ~1-10 W/m) P≈3-8 bar T≈4,4 K, ΔT≈50 à 100 mK et ΔP≈1-2 mbar par aimant
 - Hélium superfluide ~1 W/m (Jamais utilisé !)
 Coefficient JT négatif (tube lisse, Ø10 mm Δp=1 kPa 5 mK)
- » 2 W par aimant pour RHIC et 6 W par aimant pour le SSC

• Écoulement en convection diphasique forcée ou naturelle

- » Mêmes avantages et inconvénients que le refroidissement en bain
- » Opération nécessite des systèmes de pressurisation en écoulement forcé et aucun en convection naturelle
- » Transfert de chaleur assuré par ébullition nucléée mais dégradation à fort débit
 - Convection forcée (4,2 K) q_{max}≈10⁴ Wm⁻² pour tube Inox de Ø10 mm m=6 gs⁻¹ and ΔT≈1 K
 - Convection naturelle (4,2 K) $q_{max} \approx 10^3$ Wm⁻² pour tube Inox de Ø10 mm m=10-20 gs⁻¹ and $\Delta T \approx 0.3$ K
- » Convection forcée pour ATLAS et Convection naturelle pour CMS

Les modes de refroidissement : la conduction

- Cryo-générateur
 - » Conception et opération de la cryogénie plus simples
 - » Limites
 - 1,5 W à 4 K mais en augmentation constante
 - 1 W à 1,8 K
 - » Adapté pour petit aimant cryostable ou HTS
 - » Transfert de chaleur conductif dans l'aimant ou dans un liquide/solide
 - » Exemples
 - Aimant de classe 10T commercialisés depuis 1990
 - A 400-MHz NMR magnet (JASTEC, Kobe Steel, 2004)
 - Hybrid magnet SCM at Tohoku U. (2000).
 - Aimant de 18 T (MIMS, Toshiba et TIT)
 - Refroidi par CR de 1 W à 1,8 K
 - NbTi et Nb₃Sn
 - Aimants refroidis avec Cryogénérateur et solide

Transfert de chaleur dans les bobines supraconductrices

- Le Refroidissement des aimants supraconducteurs
 - » La stabilité thermique des aimants
 - » Les différents types d'aimant
 - » Les modes de refroidissement

• Transfert de chaleur dans les aimants d'accélérateur du LHC

- » Modes de refroidissement des aimants d'accélérateur
- » Les transferts de chaleur dans les aimants du LHC
- » Les nouveaux systèmes d'isolation électrique
- Transfert de chaleur dans l'aimant du détecteur CMS
 - » Mode de refroidissement des aimants de détecteur
 - » Refroidissement par écoulement « thermosiphon » en hélium
 - » Le refroidissement de l'aimant de CMS

Les aimants supraconducteurs d'accélérateurs

- Apports thermiques permanents importants
 - » Rayonnement synchrotron pour les dipôles
 - » Pertes « faisceau »
- Grande densité de courant pour une induction magnétique intense (10 T)
 - » Bobine supraconductrice = Milieu confiné
- Optimisation du bobinage car coût important dû au grand nombre d'aimants
 - » ΔT~1 K (80% sur la droite de charge)
 - » Lors de Quench T^e augmente jusqu'à 300 K et pas de pb de contraintes mécaniques

J (A/m2)

- Aimants « mouillés »
 - » Réfrigérant monophasique en contact avec le conducteur
- Réfrigération
 - » He II statique à 1 bar (LHC)
 - » He supercritique en écoulement à quelques bars (GSI, RHIC)

B. Baudouy, 10 avril 2008

Les Journées Thématiques AFF-CCS, CERN, Genève, Suisse

Transferts de chaleur dans les aimants du LHC

- Aimants « mouillés » avec un échangeur de chaleur
 - » He II stagnant pressurisé à 1.9 K en contact avec le conducteur
 - » Échangeur de chaleur d'He II saturé à 1.8 K

Transferts de chaleur dans les aimants du LHC (1/4)

- Marge en température non pas due au propriétés du supraconducteur mais au réfrigérant (He II)
 » ΔT<0,3 K (Tc<T_x)
- Isolation <u>électrique</u> constitue la plus grande barrière thermique
- Isolation électrique « Tout Polyimide »
 - » 10 mW/cm³ or 0.4 W/m (cable)
 - » ΔT<0.3 K avec une isolation perméable à l'He II et ΔT~4 K avec une isolation imperméable

Transferts de chaleur dans les aimants du LHC (2/4)

Les Journées Thématiques AFF-CCS, CERN, Genève, Suisse

Transferts de chaleur dans les aimants du LHC (3/4)

• Reproduction des transfert de chaleur dans une bobine d'aimant d'accélérateur

Les Journées Thématiques AFF-CCS, CERN, Genève, Suisse 14

Transferts de chaleur dans les aimants du LHC (4/4)

- Transfert de chaleur en He II dans les canaux d'hélium et conduction dans l'isolation
 - » A grand flux de chaleur QHeII<Qconduction

Les Journées Thématiques AFF-CCS, CERN, Genève, Suisse

Isolation «tout Kapton» multicouche

Les nouveaux systèmes d'isolation électrique

- Nouveau enrubannage en « Tout polyimide » pour aimant NbTi
- Nouvelle isolation poreuse en matériaux « céramique » pour aimant Nb₃Sn

D. Tommasini, CERN

Transfert de chaleur dans les bobines supraconductrices

- Le Refroidissement des aimants supraconducteurs
 - » La stabilité thermique des aimants
 - » Les différents types d'aimant
 - » Les modes de refroidissement
- Transfert de chaleur dans les aimants d'accélérateur du LHC
 - » Mode de refroidissement des aimants d'accélérateur
 - » Les transferts de chaleur dans les aimants du LHC
 - » Les nouveaux systèmes d'isolation électrique

• Transfert de chaleur dans l'aimant du détecteur CMS

- » Mode de refroidissement des aimants de détecteur
- » Refroidissement par écoulement « thermosiphon » diphasique en hélium
- » Le refroidissement de l'aimant de CMS

Les aimants supraconducteurs de détecteur

- Apports thermiques faibles
- Faible densité de courant pour induction magnétique moyenne (5 T)

• Aimant unique de grande dimension

» Limitation du volume d'hélium (quench)

Bobinage supraconducteur moins optimisé car aimant unique

- » ΔT~2 K (60% sur la droite de charge)
- » Lors de Quench T^e augmente jusqu'à 100 K (volume grand)
- » Limitation des contraintes mécaniques lors du réchauffement
- Aimant « sec »
 - » Réfrigération indirecte du bobinage
 - » Conducteur sur-stabilisé avec matrice de bonne conductivité

• Modes

» Écoulement d'hélium diphasique en convection forcée ou naturelle (CMS, ATLAS)

Les Journées Thématiques AFF-CCS, CERN, Genève, Suisse

Refroidissement par écoulement « thermosiphon » diphasique en hélium

• Convection naturelle diphasique

- » Puissance à extraire (aimant)
- » Ébullition nucléée
- » Déséquilibre de poids
- » Écoulement induit
 - limité par la friction
 - Amorçage

CERN, Genève, Suisse

19

- Écoulement passif
- Autonomie en cas d'arrêt de la cryogénie externe
- Minimisation du volume de liquide
- Une boucle quasi isotherme et isobare

Δp=pgΔh

CMS

Les Journées Thématiques AFF-CCS, CERN, Genève, Suisse

- Modèle homogène valide jusqu'à un titre de 14%
- Hauteur de liquide dans le réservoir
- x≠0 pour Q~0
 - » Rehausse en sortie
- A bas flux de chaleur, la moitié de la boucle est sous refroidie

Transfert de chaleur dans CMS

- Convection forcée + ébullition nucléée
- Flux critique 5 fois plus petits qu'en ébullition nucléée

Les Journées Thématiques AFF-CCS, CERN, Genève, Suisse

Références

- D. Richter, D. Fleiter, B. Baudouy, and A. Devred, Evaluation of the Transfer of Heat From the Coil of the LHC Dipole Magnet to Helium II, IEEE Trans. on Applied Superconductivity, (2007) 17 1263-1268
- L. Benkheira, B. Baudouy, and M. Souhar, Heat transfer characteristics of two-phase He I (4.2 K) thermosiphon flow, International Journal of Heat and Mass Transfer, (2007) 50 3534-3544
- L. Benkheira, B. Baudouy, and M. Souhar, Flow boiling regimes and CHF prediction for He I thermosiphon loop, Proceedings of the 21th International Cryogenic Engineering Conference, Ed. G. Gistau, (2006) 385-388
- L. Benkheira, B. Baudouy, and M. Souhar, Régimes d'ébullition convective d'un écoulement thermosiphon en hélium normal (4,2 K), Acte du Congrès français de thermique 2006, Société française de Thermique, Ed. SFT, (2006) 149-154
- P. Brédy, F.-P. Juster, B. Baudouy, L. Benkheira, *et al.*, Experimental and Theoretical study of a two phase helioum high circulation loop, Advances in Cryogenics Engineering 51, AIP, Ed. J. G. Weisend, (2005) 496-503
- L. Benkheira, M. Souhar, and B. Baudouy, Heat and mass transfer in nucleate boiling regime of He I in a natural circulation loop, Advances in Cryogenics Engineering 51, AIP, Ed. J. G. Weisend, (2005) 871-878
- Burnod L, Leroy D, Szeless B, Baudouy B, and Meuris C.Thermal modelling of the L.H.C. dipoles functioning in superfluid helium. Proceedings of 4th EPAC 1994.p. 2295-2297.
- Meuris C, Baudouy B, Leroy D, and Szeless B. Heat transfer in electrical insulation of LHC cables cooled with superfluid helium. Cryogenics 1999; 39: 921-93
- Kimura N, Kovachev Y, Yamamoto A, Shintomi T, Nakamoto T, Terashima A, Tanaka K, and Haruyama T. Improved heat transfer for Rutherford-type insulated cables in pressurized He II. Proceedings of Magnet technology 1998.p. 1238-1241.
- Baudouy B, François MX, Juster F-P, and Meuris C. He II heat transfer through superconducting cables electrical insulation. Cryogenics 2000; 40: 127-136.
- Kimura N, Yamamoto A, Shintomi T, Terashima A, Kovachev V, and Murakami M. Heat transfer characteristics of Rutherfordtype superconducting cables in pressurized He II. Ieee Transactions on Applied Superconductivity 1999; 9: 1097-1100