

Organisation Européenne pour la Recherche Nucléaire

Contenu

- L'architecture magnétique du LHC
- Le phénomène du « Quench »
- Le système « Quench Protection » de protection des aimants supraconducteurs en cas de transitions résistives
- Aperçu sur l'opération du système cryogénique : protection hydraulique par vannes et lignes de décharge
- Conclusion

L'architecture magnétique du LHC

dipolaires ou quadripolaires raccordes en série

Sectorisation du LHC

Powering Sector:

- ~210 cold circuits
- 190 orbit corrector circuits
- ~10 warm circuits

Powering Subsectors:

correspondent en général aux cryostats indépendants, facilitent la mise en opération

L'architecture magnétique du LHC

LHC Arc - Cellule élémentaire

23 cellules (2.5 km) dans chaque secteur

Le phénomène du «quench»

- The superconducting state is defined by the critical surface
 B (T), J (A/mm²), T (K)
- Magnets operate in conditions corresponding to a point beneath the critical surface

• $T=T_{op}$, $J=J_{op}$, and $B=B_{op}$

- Increasing the current in the magnet the critical surface is crossed and a small volume V of superconductor becomes normal
- The volume V starts dissipating heat because of Joule effect, and its temperature increases

Le «quench»: Marge d'opération d'un aimant supraconducteur dipolaire

Des perturbations provoquer transitions résistives

 Pendant le fonctionnement, des perturbations peuvent entraîner une brusque transition résistive de l'aimant

Energy release in the magnet due to the beam losses

- Beam losses from non-perfect setting up of cleaning
- Fast beam losses
- Beam gas scattering
- Electrical disturbances
 - Non uniform current distribution in Rutherford cables
 - Strain dependence of critical current, flux jumps

Mechanical disturbances

- Conductor motions
- Structural disturbances: micro-fractures, cracks, etc.

La propagation des transitions résistives

In LHC dipoles a quench propagates along s.c. cables with average velocity of:

- ◆ 20-30 m/s at 8.34T
 ► >500ms to quench one turn
- ♦ 50-70 cm/s at 0.54T
 ► >21s to quench one turn

At nominal field quench propagates transversally (turn-to-turn) every ca. 10ms

A. Siemko AT/MEI

Le «quench»: une montée de température

 Une fois que les chaufferettes de protection sont allumées, en moins d'une seconde l'énergie est dissipée dans l'aimant

La protection de circuits supraconducteurs du LHC

Energie stockée dans les aimants supraconducteurs

Ordres de grandeur

~9 GJ (1232 dipôles du LHC à 11850A)...

Correspondent à l'énergie

- de 1700 kg TNT
- pour chauffer et fondre 11000 kg de cuivre
- produite par une centrale nucléaire en 10 s

Quench Protection System (QPS)

1. Detection.

2. Propagation artificielle de la transition

3. Isolation de l'aimant qui transite

4. Ouverture des disjoncteurs de puissance

5. Extraction contrôlée de l'énergie de la chaîne τ =104s

13kA Energy Extraction Facilities in the UA's for LHC Main Dipole and QF/QD circuits

Détection de transition résistive

A. Siemko AT/MEI

Électronique de protection des aimants supraconducteurs

- Analog bridge detector based on state of the art instrumentation amplifiers
- (2 out of 2) || (2 out of 2) hardwired multi-channel evaluation scheme
- Radiation tolerant
- Adjustment free fixed threshold detector
- Digitally isolated interface detector circuit on magnet potential
- On-board data acquisition system
- Cost efficient (2500 circuit boards in LHC)

Électronique de protection des aimants supraconducteurs

- High precision digital systems with low detection threshold (U_{TH} = 3 mV) for the protection of HTS leads
- Fast DSP based systems for the protection of corrector and insertion region magnets (including superconducting busbars) and the inner triplets
- Both systems integrated into so-called Global Protection Unit
 - Simultaneous and independent protection of up to 4 superconducting circuits
 - Units control and trigger associated quench heater power supplies

Type A Global Protection Unit for up to 4 corrector magnet circuits. The unit is attached to dedicated 600 A current sensors.

Électronique de protection des aimants supraconducteurs

- Active protection of superconducting magnets with quench heaters
 - Function based on a thyristor triggered capacitor discharge
 - 6200 units in LHC
- Extensive R& D program
 - Component lifetime (Aluminium electrolytic capacitors)
 - Radiation tolerance (main concern: thyristors)
 - Electromagnetic susceptibility
 - Large number of devices

A. Siemko AT/MEI

Les Journées Thématiques AFF-CCS, CERN, 10-11 Avril, 2008

Diodes de «by-pass» installées dans le bain d'hélium à 1.9 K

Simplified scheme with individual by-pass diodes for one LHC-Sector

Diodes de «by-pass»

A. Siemko AT/MEI

Les Journées Thématiques AFF-CCS, CERN, 10-11 Avril, 2008

La protection des circuits d'aimants

Energy Extraction

Energy Extraction Systems

 The 200 Energy Extraction Systems represent 296 Tons of Components

13 kA

600 A

Disjoncteurs électromécaniques

Résistances de décharge

When will Energy Extraction be activated in the LHC?

- Energy Extraction is a part of the <u>normal operating procedures</u> in the LHC machine
- Energy Extraction <u>will NOT</u> be used for the ordinary de-excitation of the magnet chains. Energy recuperation is possible in some of the circuits (e.g. in the Main Dipole circuits). Operating the converters in inversion will allow power feed-back to the Mains Grid.
- Energy Extraction <u>will be</u> used in following cases:
 - In the event of a quench in a magnet coil, a superconducting busbar or a current lead
 - In the event of a risk of damage to other components in the power circuit (e.g. no water flow for a certain time in the 13 kA water-cooled cables or problems in the by-pass crowbar system or failure in the extraction switches)

«Quench» - Protection hydraulique

A. Siemko AT/MEI

Protection hydraulique par vannes et lignes de décharge

«Quench» - Protection hydraulique

Pressure build-up

Pressure discharge

A. Siemko AT/MEI

«Quench» - Protection hydraulique modélisation de processus

«Quench» - Protection hydraulique modélisation de processus

Conclusions

- The LHC as a project, it is much more complex and diversified than any other large accelerator project constructed to date
- The LHC magnet protection system is as well the most complex and diversified system of this type ever built
- The performance of the protection system is of fundamental importance for the collider and must be thoroughly validated before proceeding to run with significant stored beam energy
- Commissioning of the protection system in the first sectors is ongoing and already demonstrated correctness of the functional principles and required performance of the equipment

Remerciement

- K. Dahlerup-Pedersen
- R. Denz
- A. Vergara

Merci de votre attention