

Highlights from the LHC Physics Experiments – 'Unravelling the secrets of the Universe'

Richard Hawkings (CERN)

OPAC Topical Workshop, 27/6/2013

- The LHC experiments and their workings
- Exploring the Standard Model
- The story of the Higgs
 - From the beginning to 4th July 2012
 - What we have done in the last year
- What next supersymmetry (SUSY) and/or more?
- Conclusions
 - Disclaimer: Mainly concentrating on the physics program of ATLAS and CMS, and using more ATLAS results for illustration ...
 - http://atlas.ch/, http://cms.web.cern.ch/org/cms-public

Experiments at the LHC

4 large detectors in caverns ~ 100m underground

ATLAS and CMS

- General purpose detectors for discovery and precision SM measurements
- Similar physics goals, complementary designs

LHCb

 Specialist detector for flavour physics (e.g. CP violation)

ALICE

- Specialist experiment for heavy-ion physics
- Pb+Pb in 2010,11
- Pb+p in early 201327 June 2013

The ATLAS detector

46m long, 25m high, 7000 tonnes

Surrounding the collision point as far as possible ...
27 June 2013
Richard Hawkings

The ATLAS cavern is crowded...

So is the CMS cavern

Experiments are worldwide collaborations

- ATLAS and CMS each have ~3000 people, ~200 institutes
 - Physicists, engineers, technicians, computer scientists, support staff

An LHC detector (ATLAS)

- Detector built in layers:
 - Measure as much as possible about particles in each collision
 - Type, energy and direction
 - Tracking, EM/hadronic calorimeters and muon detectors
- Different particles' interactions:
 - Electron: track and EM shower
 - Photon: no track, EM shower
 - Proton, pion: track, small EM shower, large hadronic shower
 - Muon: track, little in EM/hadronic calorimeter, external track
 - Neutrino: nothing!
 - Infer from the 'balance' of everything else

The challenge to the detectors

- LHC luminosity up to 7 10³³ cm⁻²s⁻¹
 - Bunches of up to ~1.6 10¹¹ protons, spaced by 50ns
 - Up to ~35 pp interactions per bunch crossing at start of fill in 2012
 - Like looking for a needle in a haystack
 ... new haystacks every 50ns
- Most of these interactions are 'soft' and uninteresting
 - But produce a background of 1000s of tracks and soft energy deposits overlaid on the interesting collision
 - Degrades measurement resolution
 - Harsh radiation environment
 - Type inversion in silicon sensors
 - Eventual activation of detectors
 - Neutron background and SEU

Z→µµ event with ~25 reconstructed vertices

The particle zoo

Force

carriers

Bosons

photon

Z boson

W boson

gluon

- State of the nation (Standard Model):
 - Quarks: spin ½, charge 1/3e, 2/3e
 - Bound by QCD (strong force) in 2s and 3s into hadrons, cannot be 'free'
 - Up/down make up proton and neutron
 - 100s of exotic hadrons
 - Top quark anomalous heavy as Au
 - Leptons: spin ½, charge 0 or 1
 - Only feel EW interactions
 - Electron and neutrino, heavier cousins muon (cosmic rays), tau
 - 3 families/generations of each
 - Force carriers spin 1 bosons
 - Photon (electromagnetism), W/Z (weak force), gluon (strong force)
 - Higgs boson (?) connected with mass
- LHC Higgs, top, bottom, W, Z, γ, ...
 - And the unknown ...

	Fermions		
Quarks	U up	C charm	t top
	d down	S strange	b bottom
Leptons	V _e electron neutrino	V _μ muon neutrino	V _τ tau neutrino
	electron	μ	T tau

light ... heavy

Higgs boson

Source: AAAS

σ (proton - proton)

0.001 0.01 27 June 2013

The LHC physics landscape

1.0

TeV

10

100

- More interesting processes hiding in an overwhelming background
 - Rates for nominal LHC, 14 TeV, L=10³⁴cm⁻²s⁻¹

Process	Rate @14TeV
Inelsatic pp collision	10 ⁹ Hz
B-quark pair production	10 ⁶ Hz
Jet production, E _T >250 GeV	10 ³ Hz
W→Iv	10 ² Hz
Top-quark pair production	10 Hz
Higgs (m _H =100 GeV)	0.2 Hz

- Not all these events can be recorded
 - Multi-level online trigger system to reduce rate to ~400 Hz for offline storage
 - Based on detecting energetic leptons (e,μ,τ), photons, jets or overall energy imbalance
 - Trigger strategy defines physics we can study

Production of jets

- Protons are composite objects
 - 3 'valence' quarks carrying most momentum
 - A 'sea' of quarks/antiquarks and gluons
- Collision 'picks out' quark/gluon from each
 - To make the 'hard scattering' collision

Hard collisions scatter quarks or gluons

 Outgoing quarks/gluons produce 'jets' of particles we see in the detector

- Most jets have only a small fraction of the proton's momentum
 - Compare to simulation models a vital tool in understanding the data

A di-jet event from ATLAS

W and Z bosons

- W (80 GeV) and Z (91 GeV)
 - Force carriers of the weak force
 - Discovered at CERN in 1980s, now produced copiously in LHC collisions
 - Decay to leptons: W→e/µ v, Z→II

- Important tools for calibration of e and μ measurements, and missing energy (v)
- Interesting physics measurements
 - Proton structure, W/Z+jets production
- Produced in decay of heavier objects
- Top quarks, Higgs bosons, new particles?
 Richard Hawkings

W and Z events

CMS Z→e+e-

ATLAS W→µv

≣vents / GeV

Top quark production

number of b-tags

- Top quark as heavy as a gold nucleus (~173 GeV)
 - Mainly produced in pairs, decays as t→Wb
 - W can be detected in decays to leptons or quarks (jets)
 - b-quark produces a jet with a b-hadron, b-hadron decays a few mm from the interaction point
 - 'b-tagged' jets are a good signature of top production

tt→WbWb→lvbqqb 45000 40000 ATLAS Preliminary s=7 TeV data $t\bar{t}, m_{top} = 172.5 \text{ Ge}$ Ldt=4.7 fb⁻¹ single top 35000 30000 WW/WZ/ZZ QCD multijet 25000 ///// Uncertainty 20000 15000E 10000

Top decays before forming hadrons

5000

- Only 'bare' quark we can study
- Mass measured from decay products
- Large mass of the top is a mystery
 - Is it connected to the Higgs?
 - LHC is the first top 'factory' where we
 can study it in detail

A tt→eµvvbb top pair candidate

The Higgs boson

- Elegant unified theory for the W, Z and photon
 - But requires them to be massless
- Postulate an additional 'Higgs field' with 4 d.o.f. whose minimum potential is **not at zero**
 - Spontaneous symmetry breaking, idea also applicable in other areas of physics
- Once symmetry is broken, 3 d.o.f. go to make
 W+, W- and Z massive (longitudinal component)
 - One is left over the scalar Higgs boson H
- Interactions of H with other bosons are completely specified – only mass m_H is free
 - Predictions for production and decay vs m_H
 - Extend to fermions a 'Yukawa' coupling to H
 proportional to mass of each fermion
- A beautiful theory from the 1960s
 - Precision studies e.g. from LEP indirectly felt the influence of the Higgs, suggested m_H~100 GeV
 27 June 2013

 Richard Hawkings

Searching for the Higgs

What are we looking for?

- Higgs boson has a very short lifetime
 look for its decay products
- Relation of Higgs to mass likes to decay to the heaviest objects possible
- bb quark/antiquark pair for low m_H, then WW, ZZ if heavy enough
- H→γγ in ~0.2% of cases if light

Where to look

- In Standard Model, Higgs mass m_H is a free parameter
 - But must be <~700 GeV for the theory to make sense
- Searches at LEP and Tevatron
 - m_H>114 GeV, not around 160 GeV
- Look everywhere: 114<m_H<700 GeV
- = In many different decay modes

The H→γγ decay mode

- Happens rarely, but γ (photons) can be identified with high efficiency and good precision
 - Isolated narrow shower in the calorimeter
 - No associated inner detector track
- Select events with pairs of photons
 - Calculate $m_{yy} = \sqrt{(E_1 E_2 (1 \cos \alpha))}$
 - Energies of two photons and their opening angle
 - Need precise energy and angular resolution
 - Well-measured events give narrower peak
- m_{vv} for Higgs signal shows a peak at m_H
 - Unfortunately a lot of background from
 - 'Continuum' γγ production
 - γ+jet and jet+jet events with a jet misidentified as γ
 - Fortunately this background is smooth and can be fitted directly from the data
- Need a lot of events, see if a peak emerges ...

H→γγ candidate event in ATLAS

- Separation of γ and π⁰
 - π⁰ from jet decays to two closely separated γ
 - Can be resolved thanks to finely-segmented calorimeter

 Also gives photon direction to locate primary vertex and measure opening angle

H→γγ candidate event in CMS

Just collect the data: H→γγ accumulation

Plot of evolving m_{vv} in ATLAS

- Upper plot all events in 2011 and 2012 data, as they arrive..
- Lower plot difference between data and smooth fit function representing continuum background
- Combined 2011+2012 data:
 - **7.4σ** significance peak
 - $m_H=126.8\pm0.2\pm0.7 \text{ GeV}$
- Similar H→γγ from CMS
 - **3.2σ** significance peak
 - $m_{H}=125.4\pm0.5\pm0.6 \text{ GeV}$

The $H\rightarrow ZZ(*)\rightarrow 4$ -leptons decay mode

- Decay of Z→ee or Z→µµ easy to see
 - Electrons and muons reconstructed with high efficiency, good mass resolution
 - Combine 2 Z in the same event, and look for H→ZZ→4e, 4µ, or 2e2µ
 - Hope to see a narrow peak ...
 - For m_H>2m₇, most powerful channel
 - For lower m_H, one Z is 'off mass shell' (*), so decay is highly suppressed
 - Combined with fraction of Z→ee or →µµ of 7%, only 1 in 10⁻⁴ H gives a 4l final state
 - Only a handful of events expected
 - Emphasis on high reconstruction efficiency for e and µ down to low energies
 - Make every event count
- Expected backgrounds also low
 - Continuum ZZ(*) small below 2m_Z
 - Some contribution from Z+'fake' leptons

H→ZZ→4μ simulation

$H \rightarrow ZZ(*) \rightarrow 4\mu$ candidate event in ATLAS

H→ZZ(*)→2e2μ candidate event in CMS

Just collect the data: H→ZZ(*)→4l in ATLAS

- Plot of evolving m₄₁ in ATLAS
 - Upper plot all events in 2011 and 2012 data, as they arrive
 - Expectation from backgrounds superimposed, including single Z→4l
 - Lower plot excess of data over background expectation
- With all 2011+2012 data
 - **6.6σ** significance peak
 - $m_{H}=124.3\pm0.6\pm0.4 \text{ GeV}$

Just collect the data: H→ZZ(*)→4I in CMS

Plot of evolving m₄₁ in CMS

- All events from 2011 and 2012 as they arrive
- Expectation from backgrounds superimposed, including single Z→4I

With all 2011+2012 data

- **6.7σ** significance peak
- $m_{H}=125.8\pm0.5\pm0.2 \text{ GeV}$

The H→WW(*)→2l2v decay mode

- H→WW(*) similar sensitivity to H→ZZ(*), but with lower threshold of 160 GeV
 - But W→ev or W→µv, one detectable lepton and one undetectable neutrino
 - Two neutrinos in Higgs decay not enough information to determine the mass
 - Use a 'transverse mass' which has a lower, broad peak

Backgrounds (WW continuum, top-pair) peak in same region – need precise

Results on 4th July 2012 – Higgs independence day

- By late June 2012, both experiments had accumulated enough evidence to announce the discovery of a new particle at ~125 GeV
 - Quantified by p₀ probability that a 'background-only' experiment would look at least this signal-like (i.e. if you repeated the whole LHC program lots of times)
 - Evaluate as a function of hypothesised m_H, nothing except at ~125 GeV

Higgs independence day

Results now - consolidation and consistency

- With full 2011-12 data, Higgs is established in γγ, ZZ and WW decay modes
 - Measure the signal strength μ , the ratio of signal rate to that expected in SM
 - Generally good agreement, though ATLAS a bit high in $H\rightarrow\gamma\gamma$

The Higgs mass

- Mass is measured with high precision in H→γγ and H→ZZ(*)→4I channels
 - Results are consistent between channels and between experiments

The Higgs spin in H→γγ

- Prediction: Higgs is a scalar particle spin-0, no intrinsic angular momentum
 - All other fundamental particles are spin ½ (e, v, q...) or spin-1 (γ, g, W,Z)
- Spin-0 particle decays isotropically in its rest frame no spin axis
 - Spin-1 particle cannot decay to γγ, various possibilities for spin-2
- Large background and angular distribution distorted by acceptance effects
 - Nevertheless, spin 2+ produced by gluon-gluon fusion excluded at 99% CL

Higgs spin in $H \rightarrow ZZ(*) \rightarrow 4$ -leptons

- H→ZZ→4I decay also offers opportunity to test spin-1 hypotheses
 - Complex final state 2 production and 3 decay angles
 - Combine all information into a discriminant D to test between hypotheses
 - Which origin is more likely, given the particle directions and energies in each event
 - Construct distributions of expected D for both hypotheses, compare to data
 - In this case, alternative spin /parity1+ hypothesis excluded at > 99% CL

Higgs decay to b-quarks?

- Consistent picture emerged with rare Higgs decays to W, Z and γ
 - But ~60% of Higgs at LHC decay to bquark/antiquark pairs (bb)
 - Cannot be isolated due to much larger rate of bb from QCD processes
- Look for associated production of H in conjunction with W or Z
 - WH→lvbb, ZH→llbb or vvbb
 - Background much reduced, but still Wbb
 / Zbb or WZ/ZZ with Z→bb
 - Z mass is 91 GeV, close to H at 125 GeV – a 'shoulder' on Z-peak
 - Limited mass resolution for bb states
 - Crucial to control backgrounds precisely
- CMS has 2.1σ with full 2011+2012 data
 - ATLAS still analysing the data...

Higgs decays to tau-leptons and more

- Expect 6% Higgs decays to tau leptons (τ)
 - Taus decay to e/µ+2v (missing energy) or a narrow jet of hadrons
 - Again, difficult to separate from background, especially Z→тт
 - Need signatures with extra jets, improve S/B
 - Results nearing sensitivity to expected SM rate, but not yet conclusive
- Next steps for Higgs studies what is the nature of this particle, are there more?
 - Try to confirm decays to bb or ττ
 - Measure properties of as many decays as possible, check 'couplings' vs. prediction
 - Rule out other spin hypotheses
 - Look for more Higgs bosons!
 - The SM is only the simplest Higgs theory
- Need more LHC data wait for 2015

But we are not satisfied ...

- Higgs mass is very sensitive to 'loop corrections' involving other particles
 - Should 'naturally' push its mass towards the Planck scale (10¹⁹ GeV) where all forces are expected to unify
 - But it is light suggests huge cancellations in contributions from different particles
 - Many theorists find this unnatural and unsatisfactory the 'hierarchy problem'
- Supersymmetry
 - Partner for each particle
 - Spin differing by ½ unit

- Opposite-sign contribution exactly cancels the contribution of each SM particle
 - Some versions also predicts a stable 'lightest supersymmetric particle' ⇒ dark matter
- But all these extra particles have not been found heavier than SM partners?

SUSY searches I_n

- Squarks/gluinos expected in pairs
 - Decay to jets (from quarks) + 'missing' energy from escaping LSP
 - Look for excess of events with large missing energy and m_{eff}
 - M_{eff}=Sum(jet pT)+missing E_T
 - So far, no 'smoking guns' can only exclude regions in parameter space

SUSY searches II

- SUSY particles expected below 1 TeV if relevant to hierarchy problem
 - Less ambitious only 3rd generation (stop, stbottom) light, rest very heavy?
- Dedicated searches for stop, sbottom

- Fight against top-pair background, e.g. requiring b-jets, large transverse mass M_T
- No sign yet, but analysis ongoing ...
- Other SUSY searches
 - Look for gauginos instead of squark/gluino
 - LSP may not be stable (R-parity violation)
 - Particles decaying far from collision point

Desperately seeking SUSY – in ATLAS

ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary

AI LAC CCC	Ccarciics	30 /0 OL LOWC	
Status: LP 2013			

 $\int \mathcal{L} dt = (4.4 - 22.9) \text{ fb}^{-1} \qquad \sqrt{s} = 7, 8 \text{ TeV}$

	Model	e, μ, τ, γ	Jets	E _T miss	∫£ dt[fl:	⁻¹]	Mass limit	J2 at = (4.4 - 22.9) 10	Reference	
Inclusive Searches	$\begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow \tilde{q}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{q}\tilde{\chi}_{1}^{1} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{\chi}_{1}^{1} \rightarrow qqW^{\pm}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g} \rightarrow qqqet(\ell(t)\chi_{1}^{0}\tilde{\chi}_{1}^{0}) \\ \text{GMSB } (\tilde{r} \text{ NLSP}) \\ \text{GMSB } (\tilde{r} \text{ NLSP}) \\ \text{GGM (bino NLSP)} \\ \text{GGM (hino NLSP)} \\ \text{GGM (higgsino-bino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{GGM (niggsino NLSP)} \\ \text{Gravitino LSP} \\ \end{array}$	$\begin{array}{c} 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu (SS) \\ 2 \ e, \mu \\ 1-2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{array}$	3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 3 jets 2-4 jets 0-2 jets 0 1 b 0-3 jets mono-jet	Yes	20.3 20.3 20.3 20.3 20.3 20.7 4.7 20.7 4.8 4.8 5.8 10.5	\$\bar{g}\$ \$	1.18 T 1.1 Te' 1.24	V any m(\bar{q}) m(\bar{x}_1^0)=0 GeV 3 TeV m(\bar{x}_1^0)=0 GeV rev m(\bar{x}_1^0) <0 Section (\bar{x}_1^0) <0	ATLAS-CONF-2013-062 ATLAS-CONF-2013-054 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-062 ATLAS-CONF-2013-062 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152	
3 rd gen. ĕ med.	$\begin{array}{c} \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{1} \end{array}$	0 0 0-1 e, μ 0-1 e, μ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	80 80 80 80 80			ATLAS-CONF-2013-061 ATLAS-CONF-2013-054 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061	
3rd gen. squarks direct production	$\begin{split} \widetilde{b}_1 \widetilde{b}_1, \ \widetilde{b}_1 \to b \widetilde{\chi}_1^0 \\ \widetilde{b}_1 \widetilde{b}_1, \ \widetilde{b}_1 \to b \widetilde{\chi}_1^1 \\ \widetilde{b}_1 \widetilde{b}_1, \ \widetilde{b}_1 \to b \widetilde{\chi}_1^{\pm} \\ \widetilde{t}_1 \widetilde{t}_1 (\text{light}), \ \widetilde{t}_1 \to b \widetilde{\chi}_1^{\pm} \\ \widetilde{t}_1 \widetilde{t}_1 (\text{light}), \ \widetilde{t}_1 \to b \widetilde{\chi}_1^{\pm} \\ \widetilde{t}_1 \widetilde{t}_2, \ \text{discrete discrete } \widetilde{t}_1 \to b \widetilde{\chi}_2^{\pm} \end{split}$	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (SS) \\ 1 - 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 0-2 jets 2 b 1 b 2 b 1 b	Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.7 20.7	\$\bar{b}_1\$ \$\bar{b}_2\$ \$\bar{b}_1\$ \$\bar{b}_2\$ \$\bar{b}_1\$ \$\bar{b}_2\$ \$\bar{b}_1\$ \$\bar{b}_1\$ \$\bar{b}_2\$ \$\bar{b}_1\$ \$\bar{b}_1\$ \$\bar{b}_2\$ \$\bar{b}_1\$ \$\bar{b}_1\$ \$\bar{b}_2\$ \$\bar{b}_1\$ \$\bar{b}_2\$ \$\bar{b}_1\$ \$\bar{b}_2\$ \$\bar{b}_1\$ \$\bar{b}_2\$ \$\bar{b}_1\$ \$\bar{b}_1\$ \$\bar{b}_1\$ \$\bar{b}_2\$ \$\bar{b}_1\$ \$	100-630 GeV 430 GeV 220 GeV 150-440 GeV 150-580 GeV 200-610 GeV 320-660 GeV 500 GeV 520 GeV	$\begin{split} &m(\widetilde{Y}_1^0) \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	ATLAS-CONF-2013-053 ATLAS-CONF-2013-007 1208 4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-048 ATLAS-CONF-2013-053 ATLAS-CONF-2013-057 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025	
EW	$ \begin{array}{c} \tilde{\ell}_{\perp R} \tilde{\ell}_{\perp R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{+}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}_{\nu} \ell \tilde{\ell}_{L} \ell (\tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \mathcal{W}^{*} \tilde{\chi}_{1}^{0} Z^{*} \tilde{\chi}_{1}^{0} \end{array} $	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ	0 0 0 0	Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7		85-315 GeV 125-450 GeV 180-330 GeV 600 GeV 315 GeV	$\begin{split} &m(\vec{k}_1^0) = 0 \text{ GeV} \\ &m(\vec{k}_1^0) = 0 \text{ GeV}, \ m(\vec{\ell}, \vec{\nu}) = 0.5 (m(\vec{k}_1^+) + m(\vec{k}_1^0)) \\ &m(\vec{k}_1^+) = 0 \text{ GeV}, \ m(\vec{\ell}, \vec{\nu}) = 0.5 (m(\vec{k}_1^+) + m(\vec{k}_1^0)) \\ &m(\vec{k}_1^+) = m(\vec{k}_1^0) - m(\vec{\ell}, \vec{\nu}) = 0.5 (m(\vec{k}_1^+) + m(\vec{k}_1^0)) \\ &m(\vec{k}_1^+) = m(\vec{k}_2^0), \ m(\vec{k}_1^0) = 0.5 (m(\vec{k}_1^+) + m(\vec{k}_1^0)) \end{split}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035	
Long-lived particles	Direct $\tilde{x}_1^+\tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}$ Direct $\tilde{\tau}\tilde{\tau}$ prod., stable $\tilde{\tau}$ or $\tilde{\ell}$ GMSB, $\tilde{\chi}_1^0 \to \gamma g$, long-lived $\tilde{\chi}_1^0 \to q \mu$ (RPV)	0 0 1-2 μ 1-2 μ 2 γ 1 μ	1 jet 1-5 jets 0 0 0	Yes Yes - - Yes Yes	4.7 22.9 15.9 15.9 4.7 4.4	\$\bar{x}_1^{\frac{1}{4}}\$ \$\bar{g}\$ \$\bar{\tau}\$ \$\bar{\tau}\$ \$\bar{\tau}\$ \$\bar{\tau}\$ \$\bar{q}\$	220 GeV 857 GeV 385 GeV 395 GeV 230 GeV 700 GeV	$\begin{aligned} &1 < r(\tilde{\chi}_1^z) < 10 \text{ ns} \\ &m(\tilde{\chi}_1^0) = 100 \text{ GeV}, 10 \ \mu \text{s} < r(\tilde{g}) < 100 \text{ s} \\ &5 < \tan \beta < 50 \\ &m(\tilde{r}) = m(\tilde{\ell}) \\ &0.4 < r(\tilde{r}_1^2) < 2 \text{ ns} \\ &1 \ m \text{m} < c < t < 1 \text{ m}, \tilde{g} \text{ decoupled} \end{aligned}$	1210.2852 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 ATLAS-CONF-2013-058 1304.6310 1210.7451	
RPV	$ \begin{array}{l} LFV \ pp \!$	$\begin{array}{c} 2\ e, \mu \\ 1\ e, \mu + \tau \\ 1\ e, \mu \\ e \\ 4\ e, \mu \\ 3\ e, \mu + \tau \\ 0 \\ 2\ e, \mu \ (SS) \end{array}$	0 0 7 jets 0 0 6 jets	Yes Yes Yes Yes	4.6 4.6 4.7 20.7 20.7 4.6 20.7	$\begin{array}{ccc} \tilde{\mathbf{y}}_{r} \\ \tilde{\mathbf{y}}_{\tau} \\ \tilde{\mathbf{q}}, \tilde{\mathbf{g}} \\ \tilde{X}_{1}^{\pm} \\ \tilde{X}_{1}^{\pm} \\ \tilde{\mathbf{g}} \\ \tilde{\mathbf{g}} \\ \tilde{\mathbf{g}} \end{array}$	1.1 Te 1.2 T 760 GeV 350 GeV 666 GeV 880 GeV		1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 1210.4813 ATLAS-CONF-2013-007	
Other	Scalar gluon WIMP interaction (D5, Dirac χ)	0 0	4 jets mono-jet		4.6 10.5	sgluon M* scale 10 ⁻¹	100-287 GeV 704 GeV		1210.4826 ATLAS-CONF-2012-147	
\sqrt{s} = 7 TeV \sqrt{full data} \sqrt{\sqrt{s}} = 8 TeV \sqrt{full data} \sqrt{\sqrt{s}} = 8 TeV \sqrt{full data} \sqrt{\sqrt{s}} = 8 TeV \sqrt{full data} \sqrt{full data} \sqrt{\sqrt{s}} = 8 TeV \sqrt{										

Desperately seeking SUSY – in CMS

Rare b-decays, another window on SUSY

- Decays of B-mesons (bound state of a b and another quark) can 'feel' effect of SUSY
 - In SM, fraction of B_s→µµ is 3.5 10⁻⁹ tiny!
 - In SUSY or other theories, can be significantly enhanced due to extra diagrams
- Long experimental effort to probe this decay
 - Need to study tens of billions of B mesons

 LHCb detector specifically built to focus on b-decays, many of which go 'forward'

SM

$B_s \rightarrow \mu^+ \mu^-$ candidate in LHCb detector

Measurement of $B_s \rightarrow \mu^+ \mu^-$ decay

- Huge data reduction online and offline to select twomuon candidate events
 - Remaining background from muons from 2 different B→µ+X decays in same event

- Reconstruct invariant mass of μμ, look for peak
 - Cut on kinematic and particle ID quantities (BDT) to reduce background...
 - Significant peak (3.5 σ), Br(Bs $\rightarrow \mu\mu$)=(3.2^{+1.5}_{-1.2}) × 10⁻⁹
- Triumph of experimental work, and SM prediction
 - Significant constraint on SUSY and other theories

Is SUSY dead?

45

- SUSY remains 'an attractive theory supported by a great mass of no evidence'
 - Unlikely evidence will be found in the 2011-2012 dataset now
- But unwilling to give it up ...
 - Focus on 3rd generation (stop etc)
 - 'Compressed' or 'stealth' scenarios where mass splittings are very small – hard to pick out from background
 - More unusual signatures
- SUSY is a general class of theories
 moving away from 'minimal'
 models
 - Good 'benchmark' for other theories
- Hope for surprises in 2015
 - Mass reach will be almost doubled

'One day all these trees will be SUSY phenomenology papers'

Extra dimensions / dark matter

- Perhaps gravity appears weak because it acts in 4+n dimensions
 - The n extra dimensions (ED) are 'rolled up', and we only see gravity's weaker 'echo' in our 4 dim world
 - Brings unification scale down to ~TeV
- ADD model gravitons (G) could be produced and 'disappear' into ED ...
 - Look for unbalanced events with one jet recoiling against nothing
- Also sensitive to pair production of 'WIMPS' (X) in the GeV-TeV range
 - Weakly interacting massive particle candidate for dark matter
- Nothing found so far; LHC experiments can constrain these models

Monojet candidate event in ATLAS

Could also be from $Z(\rightarrow vv)$ +jets production ...

Other possibilities ...

- Many other exciting possibilities for things we might find
 - New quarks, leptons or heavy neutrinos, new heavy gauge bosons: W/Z-prime
 - Models where Higgs is a bound state, e.g. Technicolour
 - More Higgs bosons Higgs doublet, triplet, Little Higgs models
 - Something in the top quark sector production or decay?

- Unlikely now to see more at 8 TeV
 - Need more energy, more luminosity
 - ⇒ LHC upgrades

Conclusions

49

- LHC has been a long time coming, but a fantastic machine for particle physics
 - Machine and detector performance have exceeded our expectations
 - We can do physics with 35 pileup events per collision
 - Standard Model works remarkably well at LHC energies
 - We have found a Higgs boson
 - Looks Standard Model-like so far, but it is early days
 - We are only at the start of Higgs boson physics studies
 - We haven't found anything beyond the SM yet, but there is no shortage of ideas
- Looking forward to the 13-14 TeV run starting in 2015
 - We have a lot of new territory to explore
 - And a physics case and program of detector upgrades for the next 10-20 years
- LHC performance is the key to all this please help us!