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Lectures will discuss:

- Spacetime symmetries of the Standard Model
- Internal (gauge) symmetries of the Standard Model
- Observables and their precision tests of the theory
- Higgs boson theory and its discovery
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Special Relativity

We begin with a statement of our most cherished symmetries. Laws of physics
should be invariant under special relativity transformations: rotations (3 of
them) and velocity boosts (3 of them). This implies that the length ds2 should
be invariant under transformations

ds2 = c2dt2 � dxidxi = c2dt02 � dx0idx
0
i (1)

where c is the same in all reference frames. Define it to be c = 1.

Construct Lorentz four-vector dxµ = (dt, dx1, dx2, dx3) where µ = 0, 1, 2, 3.
Define metric tensor

gµ⌫ =

0

BBBBBBBBBB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1

CCCCCCCCCCA

(2)

Then ds2 = gµ⌫dxµdx⌫.

2



Any “position” 4-vector xµ contracted with itself is its length and should be
invariant.

xµxµ = xµgµ⌫x
⌫ = x0µx0µ (3)

What are the transformations on xµ that leave its length invariant?

x0µ = ⇤µ
⌫x

⌫, suppressing indices : x0 = ⇤x (4)

Substituting this into the invariance-requirement equation above gives

xTgx = x0Tgx0 = (⇤x)Tg(⇤x) = xT (⇤Tg⇤)x (5)

Thus we have to find matrices ⇤ that satisfy

g = ⇤Tg ⇤ (6)

If g = E where E = diag(1, 1, 1, 1) is the identity matrix, it would be much
more familiar to you. In that case

E = ⇤T⇤ =) ⇤T = ⇤�1 (7)

This last condition is the definition of special orthogonal matrices, which must
have det⇤ = ±1. The set of matrices is then SO(4), 4⇥4 orthogonal matrices.
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Definition of a group

SO(4) is a “group”, which has a very precise mathematical meaning.

A group G is a collection of elements g 2 G endowed with a multiplication
operator that satisfies four axioms:

1. Closure: For every g1, g2 2 G, g1g2 2 G

2. Associativity: For all g1, g2, g3 2 G, (g1g2)g3 = g1(g2g3)

3. Identity: There exists an e 2 G such that for all g 2 G, eg = ge = g

4. Inverse: For every g 2 G there is a g�1 2 G such that gg�1 = g�1g = e

The mathematics of group theory plays a significant role in the description of
symmetries, which includes the symmetries of the Standard Model.

Note, there is no requirement that g1g2 = g2g1.

If this equality is satisfied it is an “Abelian group” (e.g., U(1), SO(2)); other-
wise, it is called a “Non-Abelian group” (e.g., SU(2), SO(3), etc.).
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Z2 discrete group

One of the simplest groups of all is the Z2 group. It has two elements {1,�1}
and group multiplication is normal multiplication.

Multiplication table:

1 -1
1 1 -1
-1 -1 1

This is sometimes called the even/odd group.

Forms a group because the four axioms are respected:
1. Closure: check
2. Associativity: check
3. Identity: check
4. Inverse: check

This is an example of a discrete abelian group.
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Example of a Group, SO(2)

These are simply two-dimensional rotations that you are used to. Every group
element is parameterized by a rotation angle ✓:

g(✓) =

0

BB@
cos ✓ sin ✓
� sin ✓ cos ✓

1

CCA (8)

Multiply two elements together and we get

g(✓1)g(✓2) =

0

BB@
cos ✓1 sin ✓1
� sin ✓1 cos ✓1

1

CCA

0

BB@
cos ✓2 sin ✓2
� sin ✓2 cos ✓2

1

CCA (9)

=

0

BB@
cos ✓1 cos ✓2 � sin ✓1 sin ✓2 cos ✓1 sin ✓2 + cos ✓1 sin ✓2
� cos ✓1 sin ✓2 � cos ✓1 sin ✓2 cos ✓1 cos ✓2 � sin ✓1 sin ✓2

1

CCA

=

0

BB@
cos ✓3 sin ✓3
� sin ✓3 cos ✓3

1

CCA = g(✓3) (10)

Thus, closure is satisfied by g(✓1)g(✓2) = g(✓3) where ✓3 = ✓1 + ✓2.

Associativity obviously works; the identity element is when ✓ = 0; and, the
inverse of g(✓) is g(�✓), which is in SO(2). Thus, all the group axioms are
satisfied.
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Back to the Lorentz Group, SO(3, 1)

However, in our case our metric tensor g is not the identity matrix but rather
has a mixed metric of three �1 entries and one +1 entry. Nevertheless the
elements ⇤ that satisfy g = ⇤Tg ⇤ form a group, called SO(3, 1).

Here are a few examples of elements in SO(3, 1):

⇤R =

0

BB@
1 0
0 R

1

CCA , where R are the 3⇥ 3 rotation matrices SO(3). (11)

⇤Bx =

0

BBBBBBBBBB@

cosh ⌘ � sinh ⌘ 0 0
� sinh ⌘ cosh ⌘ 0 0

0 0 1 0
0 0 0 1

1

CCCCCCCCCCA

velocity boost in the x direction (12)

where

cosh ⌘ = � and sinh ⌘ = ��, with � =
1

r

1� v2/c2
and � = v/c. (13)
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With a little algebra you can see that x0 = ⇤Bxx is equivalent to what you are
used to seeing

ct0 =
1

r

1� v2/c2

0

@ct� v

c
x

1

A (14)

x0 =
1

r

1� v2/c2
(x� vt) (15)

y0 = y (16)

z0 = z (17)

Summary of this: SO(3, 1) is a group and the matrices ⇤ are its elements, and
their transformations on Lorentz vectors are rotations and boosts that we are
familiar with.

What does all of this have to do with particle physics?

The “Symmetry Invariance Principle”
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Symmetry Invariance Principle

When we say that nature is invariant under some symmetry, it means

• All objects in the theory have well defined transformation properties (i.e.,
well defined “representation” of the symmetry group) under the symmetry,
and

• Every interaction is invariant (i.e., a “singlet”) under the symmetry trans-
formations

The “objects” of particle physics are particle fields.

The interactions in particle physics are the operators in the lagrangian.
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Singlet and Triplet representations of SO(3)

Representations of groups can be intuitively understood from tensor analysis
from rotations, the group SO(3) with elements Rij satisfying the condition
RT = R�1 and detR = 1.

Let’s start with a vector. If we rotate the vector v we get

v ! v0 = Rv, or equivalently v0i = Rijvj. (18)

The vector v is definite transformations properties under SO(3) and it has
three independent elements (vx, vy, vz) and so it defines a “three-dimensional
representation” or “triplet representation” of SO(3). Or, for short, 3.

There is always the trivial or “singlet” representation:

c ! c0 = c singlet representation. (19)

This is the 1 representation, or sometimes called the “scalar representation”.

We have just defined rather precisely the 1 and 3 representations of SO(3)
from the scalar and vector. What about tensors? Does a tensor form a separate
representation of SO(3). Yes, but it’s slightly more complicated!
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Tensor representations of SO(3)

Let us look at the tensor formed from two vectors: Tij = aibj. This tensor has
9 elements. However, there are subspaces of these 9 elements that have definite
and closed transformation properties under SO(3).

The most obvious is the trace: ⌧ = Tr(T ) = aibi. Under rotation it is preserved.

⌧ 0 �! RilalRikbk = RT
kiRilalbk = �klalbk = albl = ⌧ (20)

The trace of the tensor therefore is a singlet 1 representation of SO(3).

Now let us look at the anti-symmetric tensor AT = �A,

Aij = aibj � ajbi =

0

BBBBBB@

0 A12 A13

�A12 0 A23

�A13 �A23 0

1

CCCCCCA
(3 independent elements) (21)

The anti-symmetric tensor does not change its character under transformations

A0
ml = RmiRljAij = RmiRlj(�Aji) = �RljRmiAji = �RliRmjAij = �A0

lm

Thus the anti-symmetric tensor forms a 3A representation of SO(3).
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Let’s now take the symmetric tensor S = ST ,

Sij = aibj + ajbi =

0

BBBBBB@

S11 S12 S13

S12 S22 S23

S13 S23 S33

1

CCCCCCA
(6 distinct entries) (22)

However, we have already used the trace to form a representation, so we need to
“subtract out the trace”. What we really need is the traceless symmetric tensor
ŜT = Ŝ with Tr(Ŝ) = 0:

Ŝ =

0

BBBBBB@

S11 S12 S13

S12 S22 S23

S13 S23 �S11 � S22

1

CCCCCCA
(5 independent elements) (23)

This traceless symmetric tensor preserves its character under transformations

Ŝml = RmiRljŜij = RmiRljŜji = RliRmjŜij = Ŝlm (24)

Thus, the traceless symmetric tensor forms a 5S representation of SO(3).

So, the 9 elements of the tensor form a reducible rep of SO(3), which can be
decomposed into three irreps of dimension 1, 3 and 5. In group theory language
we we did was show that

3⌦ 3 = 3A � (1� 5)S (25)
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There are an infinite number of representations of SO(3)

All representations can found by taking tensor products of the vectors

Tij = aibj (26)

Tijk... = aibjck . . . (27)

There are techniques to do this, and tables exist that classify all representations.

Representation of dimension d: Group elements g 2 G are mapped to
d⇥dmatricesM(g) that preserve all the group multiplications. I.e., if g1g2 = g3
then M(g1)M(g2) = M(g3).

Warning: Often it is said that

“X is a representation r of the symmetry group G”,

whereas what is really meant is

“X is an object such that when a symmetry transformation of G is applied, it
transforms under the r representation”
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What does this have to do with the Lorentz group?

The relevance is because

1. SO(3) and SU(2) are closely related, and

2. The representations of SO(3, 1) can be classified in terms of representations
of SU(2)⇥ SU(2)

Next, I will remind you why point 1 is correct.

In order to show you that point 2 is correct, I will need to tell you about
“generators” for group elements and the Lie algebras that they form.
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