
Interactions preserving Lorentz invariance

From mathematical point of view

particle: an object that has a well-defined transformation property under Lorentz
symmetry.

If nature is to be invariant under the Lorentz symmetry then the only inter-
actions allowed among particles are those that are singlets under both left and
right spin groups.

You know how to do this!

There are two facts you learned from early days that help:

1. Tensor product of spin s1 and s2 give spin |s1 � s2| and s1 + s2 results, and

2. If all tensor indices are contracted, the result is a scalar – invariant!

We can manipulate and understand invariants using these facts, and build up
all Lorentz invariants of the theory.
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Products of spin – Majorana fermion mass

Just as in QM we realized that

|1/2i ⌦ |1/2i = |0i � |1i (49)

we can do the same thing with particles, with the slight complication that we
need to keep track of the left and right SU(2)’s separately.

Consider the spinor fR = (0, 1/2), and let’s ask if fR · fR interaction is ok:

left : 0⌦ 0 = 0 contains singlet (50)

right : 1/2⌦ 1/2 = 0� 1 contains singlet (51)

so this is an invariant. It is the mass operator: mfR · fR.

To be more precise, there is a spinor-metric on the contraction which is i�2 = ".
The mass operator is

mfT
Ri�

2fR (Majorana mass) (52)

If fR has charge (e.g., electric charge) this term is not invariant, and not allowed.
In the Standard Model only right-handed neutrinos qualify for this type of mass:

MR ⌫
T
Ri�

2⌫R. (53)
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Dirac fermion mass

What if we have fL = (1/2, 0) and fR = (0, 1/2).

We learned early that a Lorentz invariant is �T
Ri�

2fR, and we also learned that
i�2f ⇤

L transforms like a RH-fermion. Thus, identifying �R = i�2f ⇤
L, we have

�T
R i�2fR = (i�2f ⇤

L)
T i�2fR = f †

Li(�
2)T i�2fR = f †

LfR (54)

which used the facts that (�2)T = ��2 and �2�2 = 1.

Likewise f †
RfL is an invariant, which is just the conjugate of f †

LfR.

Therefore, we have identified a new fermion bilinear invariant (i.e., mass term):

mf (f
†
LfR + f †

RfL). (55)

This is often called Dirac mass.
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Four component spinor representation

We have been talking about fL and fR, and making mass terms that connect the
two. But you have more commonly heard only labels like “electron”, “muon”,
“quarks.” We can put the two-component fL and fR spinors, Weyl spinors, into
a four-component spinor, the Dirac spinor as this:

 =

0

BB@
 L

 R

1

CCA (56)

We can construct the projection operators PL = ( L 0) and PR = (0  R)
from

PL,R =
1

2
(1⌥ �5) where �5 =

0

BB@
�1 0
0 1

1

CCA . (57)

The four dimensional analogy to the �µ matrices are the �µ matrices, where in
the Weyl representation they are

�0 =

0

BB@
0 1
1 0

1

CCA , �i =

0

BB@
0 �i

��i 0

1

CCA . (58)

The �0 acting on  interchanges  L $  R (parity operation).
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Four-component spinor invariants

In this four component notation, we can write the Majorana and Dirac mass
terms.

For the Majorana mass, let us define the built-up four-component spinor of �L

(which transforms under (1/2, 0) representation) to be

 M =

0

BB@
�L

i�2�⇤
L

1

CCA and  D =

0

BB@
 L

 R

1

CCA (59)

The Majorana and Dirac mass terms are then

m T
M(�i�0�2) M (Majorana mass) (60)

mD  ̄D D where  ̄D =  †
D�

0 (Dirac mass) (61)
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Vector particle invariants

A vector particle Aµ (e.g., photon) has many invariants. Easy: just contract all
the Lorentz indices.

The invariants up to dimension four are

AµA
µ, @µA

µ, @µA
µ@⌫A⌫, @µA

⌫@µA⌫, AµA⌫AµA⌫. (62)

If Aµ is the gauge field of a U(1) invariant theory, such as QED, interactions
must be invariant also under gauge transformations

Aµ ! Aµ +
1

e
@µ⇤ (63)

The only interaction that is invariant under both Lorentz symmetry and gauge
symmetry is

Fµ⌫F
µ⌫, where Fµ⌫ ⌘ @µA⌫ � @⌫Aµ. (64)

This is the well-known kinetic energy term in the QED lagrangian

LKE
QED = �1

4
Fµ⌫F

µ⌫. (65)
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Vector particles interacting with fermions

The vector Aµ interaction with fermions requires us to consider its (1/2, 1/2)
representation: �µAµ. A general interaction

(1/2, 0)⌦ (1/2, 1/2)⌦ (0, 1/2) = contains (0, 0) contains singlet (66)

If �R = (0, 1/2) and fL = (1/2, 0) then we can have interaction

�T
R · �µAµ · fL (67)

where the first (second) · refers to SU(2)R (SU(2)L) contraction.

Consider �R = i�2f ⇤
L. Interaction becomes

(i�2f ⇤
L)

T · �µAµ · fL = �if †
L(�

2)T�2�µA
µ · fL = if †

L�µA
µ · fL (68)

In four component language we see this interaction as

i ̄�µAµ . (69)
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Scalar interactions with itself, fermions and vector bosons

The invariant interactions of vector bosons with scalars is also easy. If we assume
real scalar �, we have

@µ�@
µ�, �, �2, @µ@µ�, �3, �4, etc. (70)

For charged complex scalar � (like the Higgs boson doublet) invariance under
Lorentz and charge symmetry allow

(@µ�
⇤)(@µ�), �⇤�, (�⇤�)2, etc. (71)

Interactions with the vector bosons are

AµA⌫�
⇤�, Aµ�⇤ @µ�, etc. (72)

Interactions with fermions include

�⌫TRi�
2⌫R, �⌫TRi�

2⌫R, �f †
RfL, �f †

RfL, etc. (73)
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Lorentz invariance is too general for what is witnessed in nature

Lorentz invariance alone allows us to classify particles and gives strong con-
straints on what particles are allowed to interact. For example, one cannot have
the interactions

AµfR, f †
LfLfR, �fLAµ, etc. (Lorentz forbidden) (74)

But there are many other interactions forbidden that Lorentz invariance alone
does not preclude. These include

AµA
µ, e†L�

µAµ · uL, ⌧TR�
2⌧R, µ†

L� tR, etc. (75)

These are forbidden by “internal” gauge symmetries. The Standard Model
particles are charged not only under SU(2)L ⇥ SU(2)R Lorentz symmetry, but
also under SU(3)c ⇥ SU(2)W ⇥ U(1)Y gauge symmetries.

Interactions must be invariant under the transformations of every symme-

try.

We discuss next the gauge symmetries of the Standard Model.
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Strong, weak and hypercharge forces

The Standard Model particles also transform as representations of the strong,
weak and hypercharge forces, which in group theory language is

SU(3)c ⇥ SU(2)W ⇥ U(1)Y (Standard Model gauge groups). (76)

If a particle ' transforms as d dimensional representation R of group G, then

'! '0 = ei✓kT
R
k ' (77)

where TR are d ⇥ d dimensional generator matrices associated with the repre-
sentation R, and ✓k are the parameters of the group, analogous to the angle of
rotation in SO(2).

Global symmetries mean ✓k do not depend on spacetime, whereas with local
symmetries they do, ✓k(x).

Gauge symmetries are local internal symmetries.
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Hypercharge gauge symmetry

Hypercharge is a U(1) gauge symmetry, and its generator is the hypercharge
operator Y , and the parameter we can define as ↵.

Under gauge transformation

 !  0 = ei↵(x)Y (78)

Let’s look at the transformation of the kinetic operator

 †
L�µ@

µ ·  L ! (ei↵Y L)
†�µ@

µ · ei↵Y L (79)

=  †
Le

�i↵Y �µe
i↵Y · (iY @µ↵ L + @µ L) (80)

=  †
L�µ · @µ L +  †

L�µ · (iY @µ↵) L (81)

The kinetic term would be invariant if it weren’t for @µ↵ 6= 0 contribution.

Introduce covariant derivative Dµ = @µ � iY Aµ (introducing gauge field Aµ),
and one finds

 †
L�µD

µ ·  L, is invariant when (82)

Aµ ! A0
µ = Aµ + i@µ↵. (83)
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Field SU(3) SU(2)L T 3 Y
2 Q = T 3 + Y

2
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Invariants under SU(3)c and SU(2) are found when tensor products yield a
singlet 1. Under SU(3) conjugate representations are distinct (i.e., Q̄L is 3̄).
Conjugate reps for SU(2) are not distinct.

SU(3)c : 3̄⌦ 3 = 1 + 8 (84)

3⌦ 3 = 3̄ + 6 (85)

8⌦ 8 = 1 + · · · (86)

SU(2)W : 2⌦ 2 = 1 + 3 (87)

3⌦ 3 = 1 + · · · (88)
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