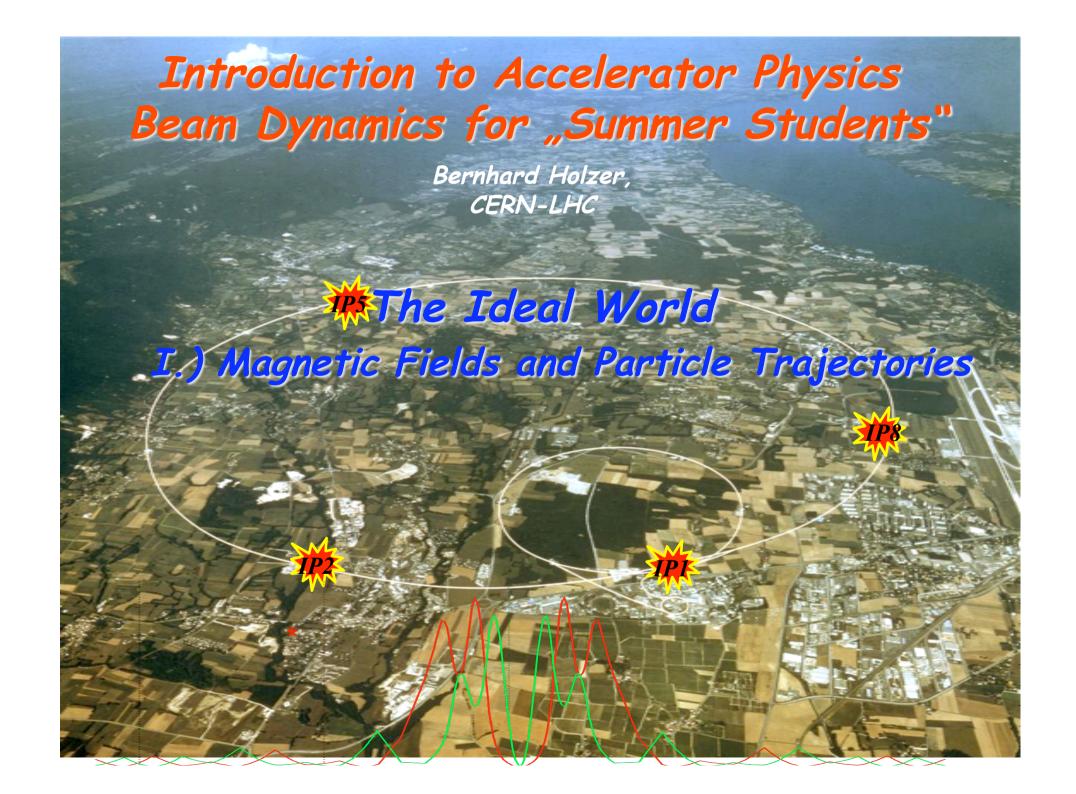
II A Bit of Theory

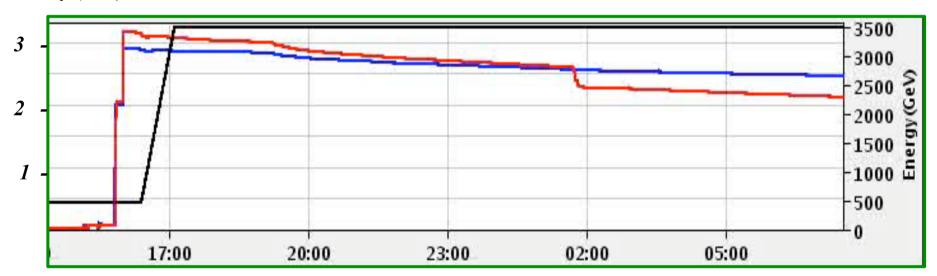


Luminosity Run of a typical storage ring:

LHC Storage Ring: Protons accelerated and stored for 12 hours distance of particles travelling at about $v \approx c$ $L = 10^{10} \text{--} 10^{11} \text{ km}$

... several times Sun - Pluto and back D

intensity (10^{11})



- → guide the particles on a well defined orbit ("design orbit")
- > focus the particles to keep each single particle trajectory within the vacuum chamber of the storage ring, i.e. close to the design orbit.

1.) Introduction and Basic Ideas

" ... in the end and after all it should be a kind of circular machine" → need transverse deflecting force

Lorentz force

$$\vec{F} = q * (\vec{E} + \vec{v} \times \vec{B})$$

typical velocity in high energy machines:

$$v \approx c \approx 3*10^8 \, \text{m/s}$$

Example:

$$B = 1T \implies F = q * 3 * 10^8 \frac{m}{s} * 1 \frac{Vs}{m^2}$$

$$F = q * 300 \frac{MV}{m}$$
equivalent el. field ... \Rightarrow E

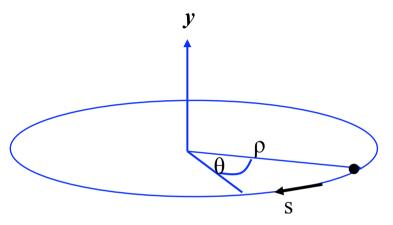
technical limit for el. field:

$$E \le 1 \frac{MV}{m}$$

old greek dictum of wisdom:

if you are clever, you use magnetic fields in an accelerator wherever it is possible.

The ideal circular orbit



circular coordinate system

condition for circular orbit:

$$F_L = e v B$$

$$F_{centr} = \frac{\gamma \, m_0 \, v^2}{\rho}$$

$$\frac{\gamma \, \boldsymbol{m}_0 \, \boldsymbol{v}^2}{\rho} = \boldsymbol{e} \, \boldsymbol{v} \, \boldsymbol{B}$$

$$\frac{p}{e} = B \rho$$

$$B \rho = "beam rigidity"$$

2.) The Magnetic Guide Field

Dipole Magnets:

define the ideal orbit

homogeneous field created
by two flat pole shoes

$$B = \frac{\mu_0 \ n \ I}{h}$$

Normalise magnetic field to momentum:

$$\frac{p}{e} = B \rho \qquad \longrightarrow \qquad \frac{1}{\rho} = \frac{e B}{p}$$

convenient units:

$$B = [T] = \left[\frac{Vs}{m^2}\right] \qquad p = \left[\frac{GeV}{c}\right]$$

Example LHC:

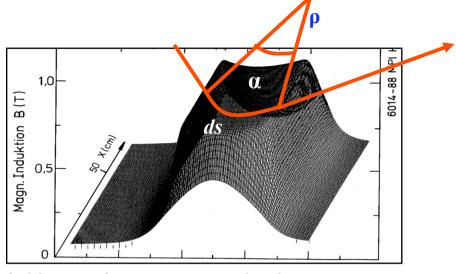
$$B = 8.3T$$

$$p = 7000 \frac{GeV}{c}$$

$$\frac{1}{\rho} = e \frac{8.3 \frac{Vs}{m^2}}{7000*10^9 \frac{eV}{c}} = \frac{8.3 s*3*10^8 \frac{m}{s}}{7000*10^9 m^2}$$

$$\frac{1}{\rho} = 0.333 \frac{8.3}{7000} \frac{1}{m}$$

The Magnetic Guide Field



field map of a storage ring dipole magnet

$$\rho = 2.53 \text{ km} \longrightarrow 2\pi \rho = 17.6 \text{ km}$$
$$\approx 66\%$$

$$\boldsymbol{B} \approx 1 \dots 8 \ \boldsymbol{T}$$

rule of thumb:

$$\frac{1}{\rho} \approx 0.3 \frac{B[T]}{p[GeV/c]}$$

"normalised bending strength"

The Problem:

LHC Design Magnet current: I=11850 A

and the machine is 27 km long!!!

Ohm's law: U = R * I, $P = R * I^2$

Problem:

reduce ohmic losses to the absolute minimum

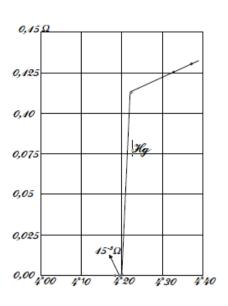
The Solution: super conductivity

Born 17 March 1789 Erlangen, Germany

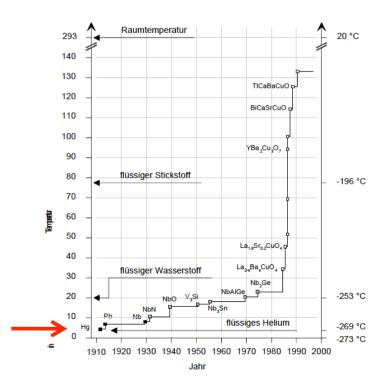


Super Conductivity

discovery of sc. by H. Kammerling Onnes, Leiden 1911



LHC 1.9 K cryo plant

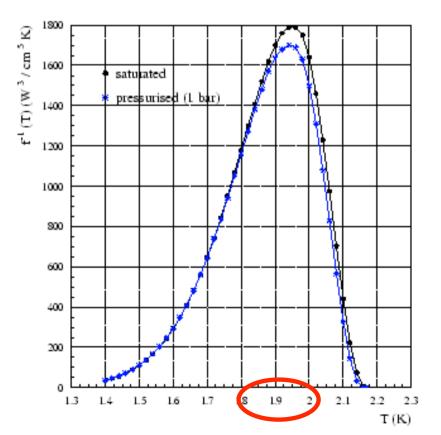


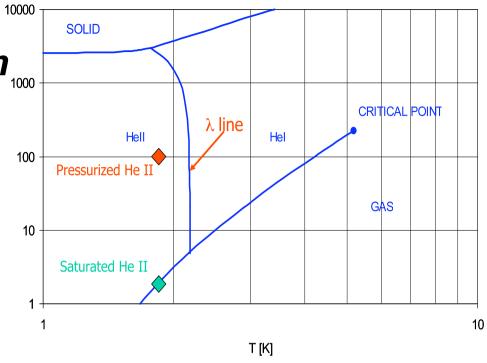
Superfluid helium:

1.9 K cryo system

P [kPa]

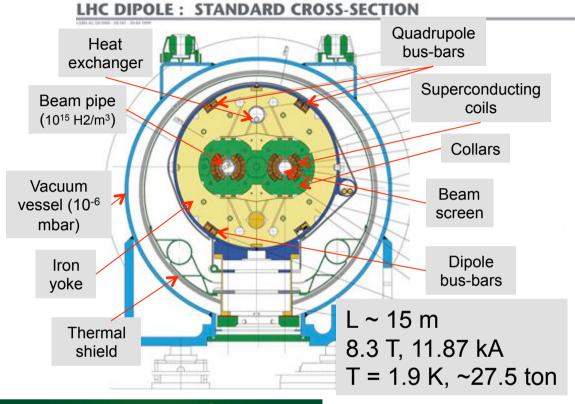
Phase diagramm of Helium

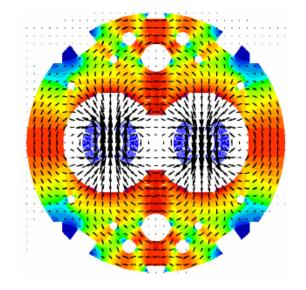




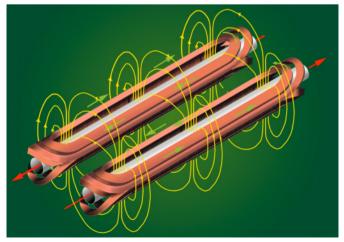
thermal conductivity of fl. Helium in supra fluid state

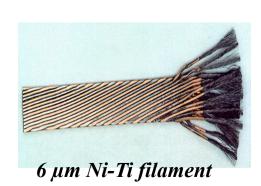
LHC: The -1232- Main Dipole Magnets

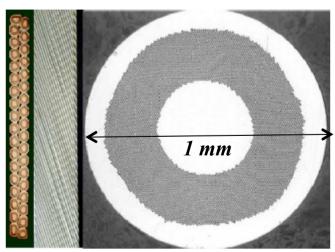




required field quality: $\Delta B/B=10^{-4}$







2.) Focusing Properties - Transverse Beam Optics

$$\overline{F(t)} = q\left(\overline{E(t)} + \overline{v(t)} \otimes \overline{B(t)}\right)$$

$$\mathbf{F_E} \qquad \mathbf{F_B}$$

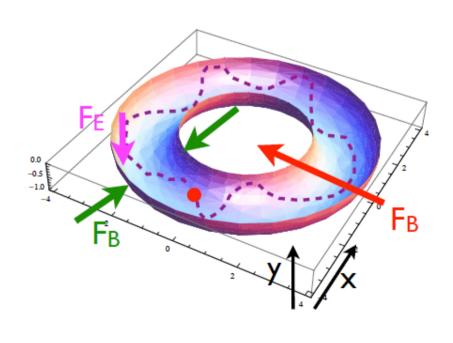
Linear Accelerator

F_B

Y

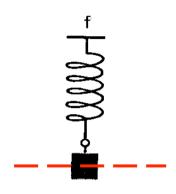
S

Circular Accelerator



2.) Focusing Properties - Transverse Beam Optics

classical mechanics: pendulum



there is a restoring force, proportional to the elongation x:

$$m*\frac{d^2x}{dt^2} = -c*x$$

general solution: free harmonic oszillation

$$x(t) = A * \cos(\omega t + \varphi)$$

Storage Ring: we need a Lorentz force that rises as a function of the distance to?

..... the design orbit

$$F(x) = q * v * B(x)$$

Quadrupole Magnets:

focusing forces to keep trajectories in vicinity of the ideal orbit required:

linear increasing Lorentz force

linear increasing magnetic field

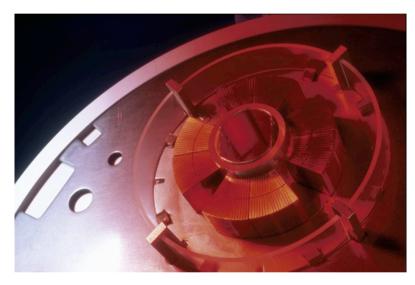
$$B_{y} = g x$$
 $B_{x} = g y$

normalised quadrupole field:

$$k = \frac{g}{p/e}$$

simple rule:

$$k = 0.3 \frac{g(T/m)}{p(GeV/c)}$$



LHC main quadrupole magnet

$$g \approx 25 ... 220 \ T/m$$

what about the vertical plane: ... Maxwell

$$\vec{\nabla} \times \vec{\mathbf{B}} = \vec{\nabla} + \frac{\partial \vec{\mathbf{E}}}{\partial \mathbf{x}} = 0$$
 $\Rightarrow \frac{\partial B_y}{\partial x} = \frac{\partial B_x}{\partial y} = g$

$$\Rightarrow \frac{\partial B_{y}}{\partial x} = \frac{\partial B_{x}}{\partial y} = g$$

Focusing forces and particle trajectories:

normalise magnet fields to momentum (remember: $B*\rho = p/q$)

Dipole Magnet

$$\frac{B}{p/q} = \frac{B}{B\rho} = \frac{1}{\rho}$$

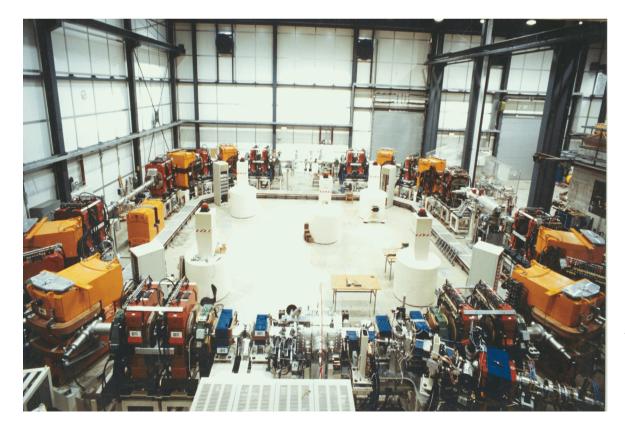
Quadrupole Magnet

$$k := \frac{g}{p/q}$$

3.) The Equation of Motion:

$$\frac{B(x)}{p/e} = \frac{1}{\rho} + k x + \frac{1}{2!} m x^2 + \frac{1}{3!} m x^3 + \dots$$

only terms linear in x, y taken into account dipole fields quadrupole fields



Separate Function Machines:

Split the magnets and optimise them according to their job:

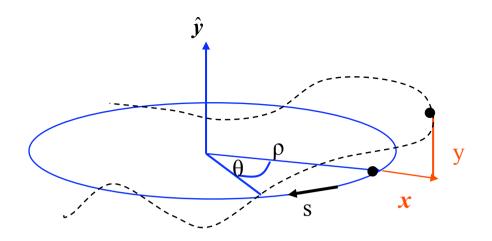
bending, focusing etc

Example: heavy ion storage ring TSR

The Equation of Motion:

***** Equation for the horizontal motion:

$$x'' + x \left(\frac{1}{\rho^2} + k\right) = 0$$



x = particle amplitude

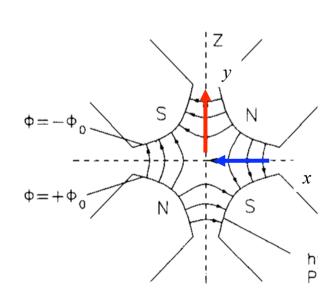
x' = angle of particle trajectory (wrt ideal path line)

* Equation for the vertical motion:

$$\frac{1}{\rho^2} = 0$$
 no dipoles ... in general ...

 $k \iff -k$ quadrupole field changes sign

$$y'' - k y = 0$$



4.) Solution of Trajectory Equations

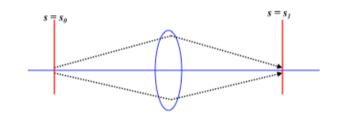
Define ... hor. plane:
$$K = 1/\rho^2 + k$$

... vert. Plane: $K = -k$
$$\begin{cases} x'' + K & x = 0 \end{cases}$$

Differential Equation of harmonic oscillator ... with spring constant K

Ansatz: Hor. Focusing Quadrupole K > 0:

$$x(s) = x_0 \cdot \cos(\sqrt{|K|}s) + x_0' \cdot \frac{1}{\sqrt{|K|}} \sin(\sqrt{|K|}s)$$
$$x'(s) = -x_0 \cdot \sqrt{|K|} \cdot \sin(\sqrt{|K|}s) + x_0' \cdot \cos(\sqrt{|K|}s)$$



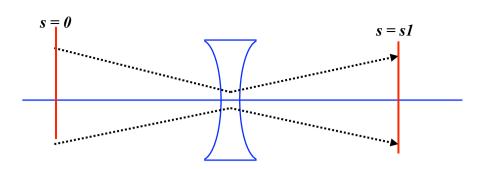
For convenience expressed in matrix formalism:

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s1} = M_{foc} * \begin{pmatrix} x \\ x' \end{pmatrix}_{s0}$$

$$M_{foc} = \begin{pmatrix} \cos(\sqrt{|K|}l) & \frac{1}{\sqrt{|K|}}\sin(\sqrt{|K|}l) \\ -\sqrt{|K|}\sin(\sqrt{|K|}l) & \cos(\sqrt{|K|}l) \end{pmatrix}$$

hor. defocusing quadrupole:

$$x'' - K x = 0$$



Ansatz: Remember from school

$$x(s) = a_1 \cdot \cosh(\omega s) + a_2 \cdot \sinh(\omega s)$$

$$M_{defoc} = \begin{pmatrix} \cosh \sqrt{|K|}l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|}l \\ \sqrt{|K|} \sinh \sqrt{|K|}l & \cosh \sqrt{|K|}l \end{pmatrix}$$

drift space:

$$K = 0$$

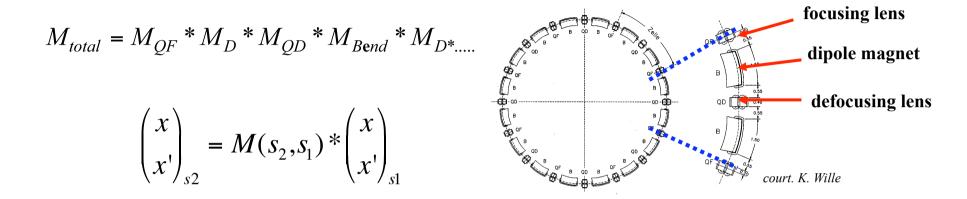
$$x(s) = x_0' * s$$

$$M_{drif\ t} = \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix}$$

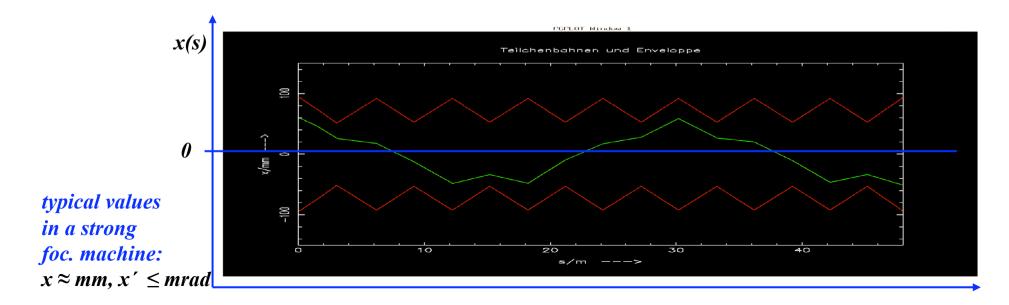
! with the assumptions made, the motion in the horizontal and vertical planes are independent " ... the particle motion in x & y is uncoupled"

Transformation through a system of lattice elements

combine the single element solutions by multiplication of the matrices



in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator,



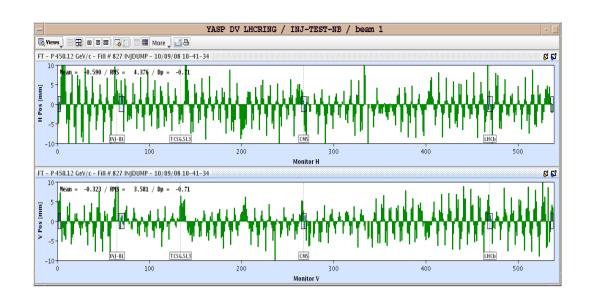
5.) Orbit & Tune:

Tune: number of oscillations per turn

64.3159.32

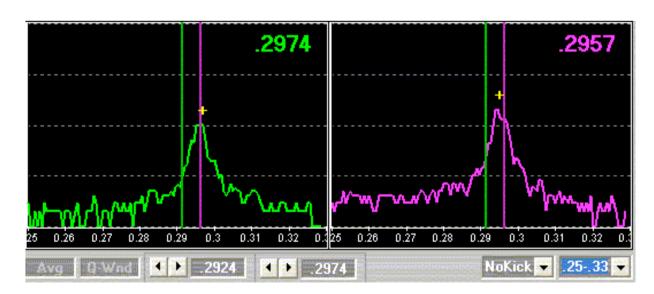
Relevant for beam stability:

non integer part



LHC revolution frequency: 11.3 kHz

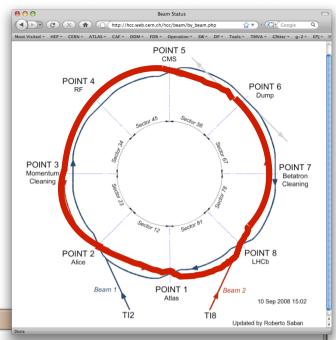
0.31*11.3 = 3.5*kHz*

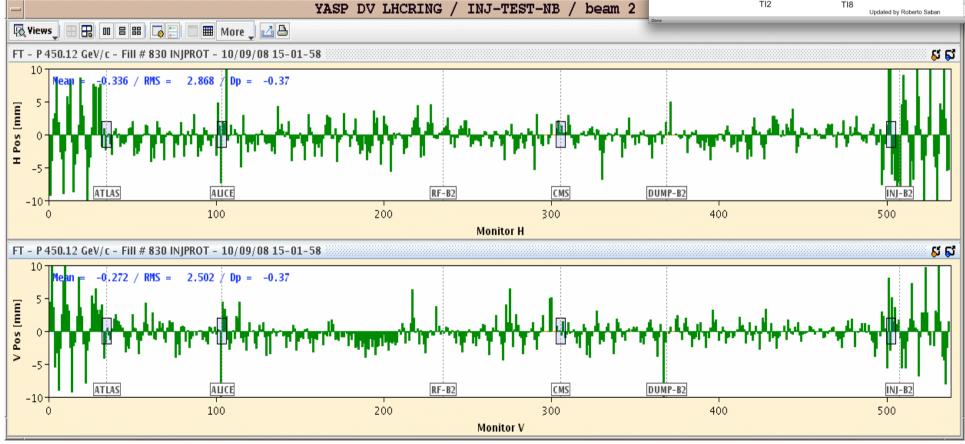


LHC Operation: Beam Commissioning

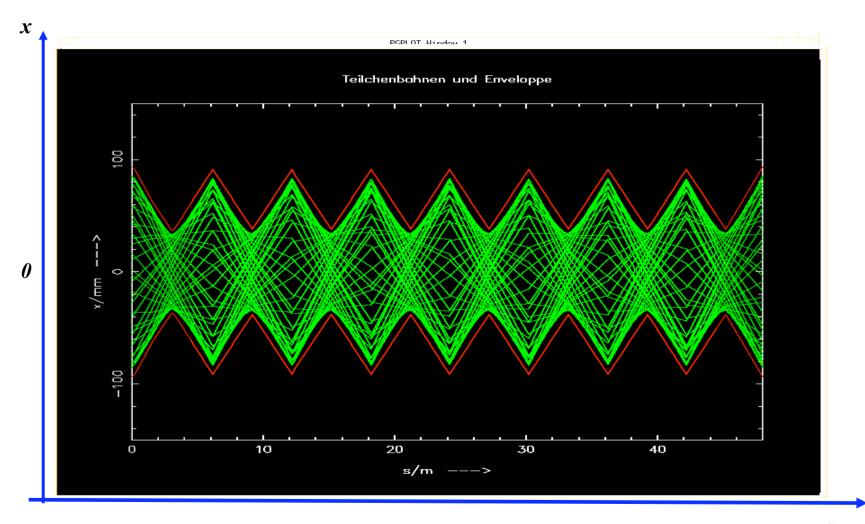
First turn steering "by sector:"

- One beam at the time
- □Beam through 1 sector (1/8 ring), correct trajectory, open collimator and move on.

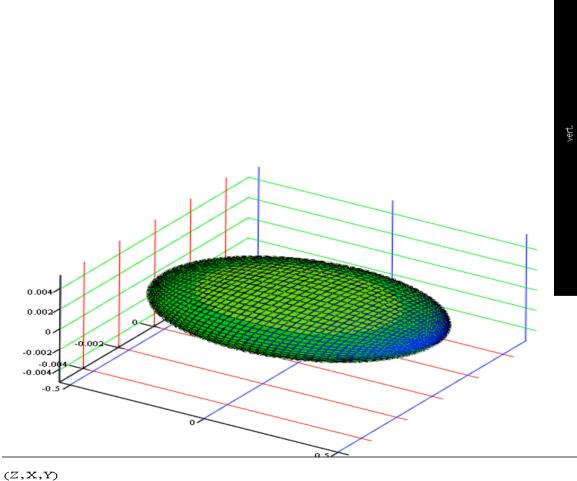


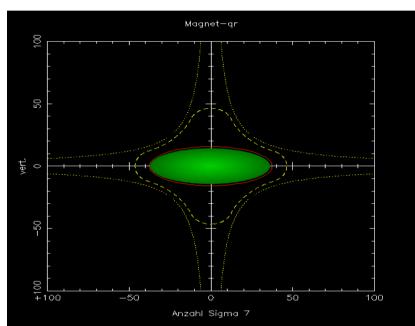


... or a third one or ... 10¹⁰ turns



II.) The Ideal World: Particle Trajectories, Beams & Bunches





Bunch in a Storage Ring

Astronomer Hill:

differential equation for motions with periodic focusing properties "Hill's equation"

Example: particle motion with periodic coefficient

equation of motion: x''(s) - k(s)x(s) = 0

restoring force \neq const, k(s) = depending on the position sk(s+L) = k(s), periodic function we expect a kind of quasi harmonic oscillation: amplitude & phase will depend on the position s in the ring.

6.) The Beta Function

"it is convenient to see"

... after some beer ... general solution of Mr Hill can be written in the form:

Ansatz:

$$x(s) = \sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos(\psi(s) + \phi)$$

 ε , Φ = integration constants determined by initial conditions

 $\beta(s)$ periodic function given by focusing properties of the lattice \leftrightarrow quadrupoles

$$\beta(s+L) = \beta(s)$$

ε beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter,
cannot be changed by the foc. properties.
scientifiquely spoken: area covered in transverse x, x' phase space ... and it is
constant!!!

 $\Psi(s) = ,phase advance$ of the oscillation between point ,0" and ,s" in the lattice. For one complete revolution: number of oscillations per turn ,Tune

$$Q_y = \frac{1}{2\pi} \cdot \int \frac{ds}{\beta(s)}$$

6.) The Beta Function

Amplitude of a particle trajectory:

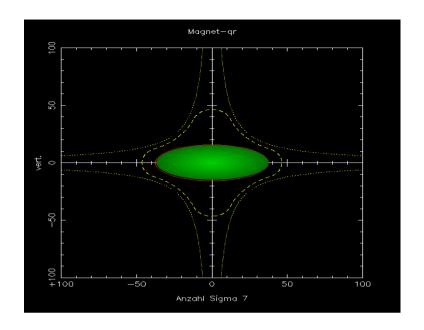
$$x(s) = \sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos(\psi(s) + \varphi)$$

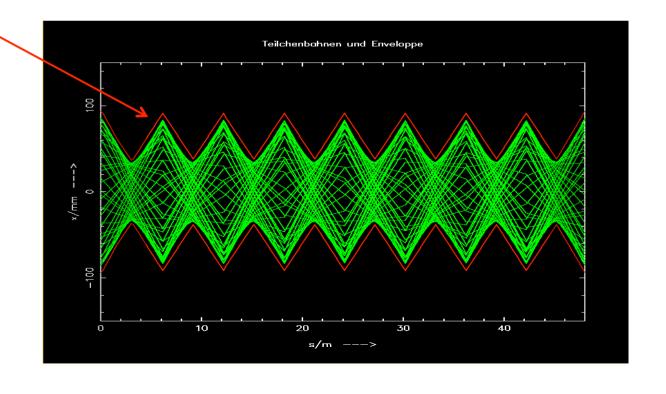
Maximum size of a particle amplitude

$$\hat{x}(s) = \sqrt{\varepsilon} \sqrt{\beta(s)}$$

(... the envelope of all particle trajectories at a given position "s" in the storage ring.

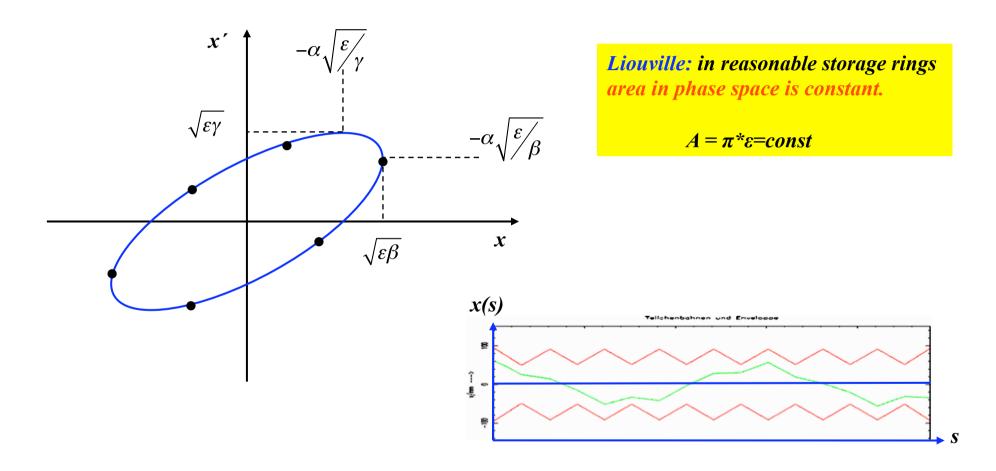
It reflects the periodicity of the magnet structure.





7.) Beam Emittance and Phase Space Ellipse

$$\varepsilon = \gamma(s) * x^{2}(s) + 2\alpha(s)x(s)x'(s) + \beta(s)x'(s)^{2}$$



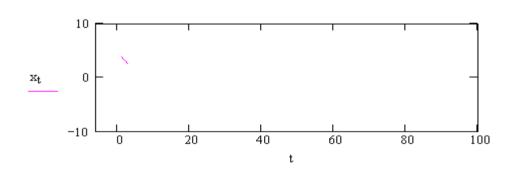
ε beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.

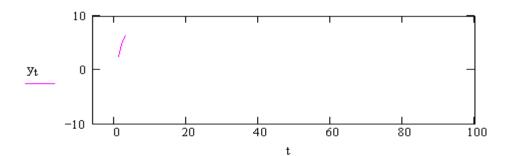
Scientifiquely spoken: area covered in transverse x, x' phase space ... and it is constant !!!

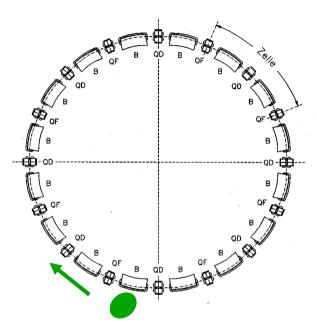
Particle Tracking in a Storage Ring

Calculate x, x' for each linear accelerator element according to matrix formalism

plot x, x'as a function of "s"

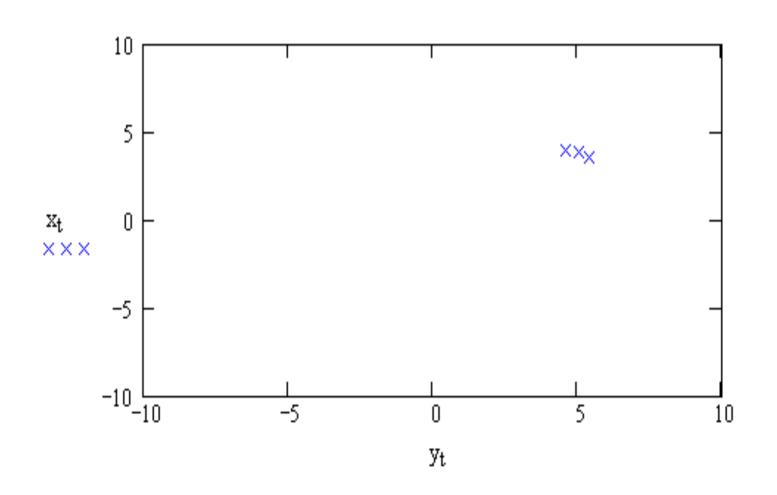




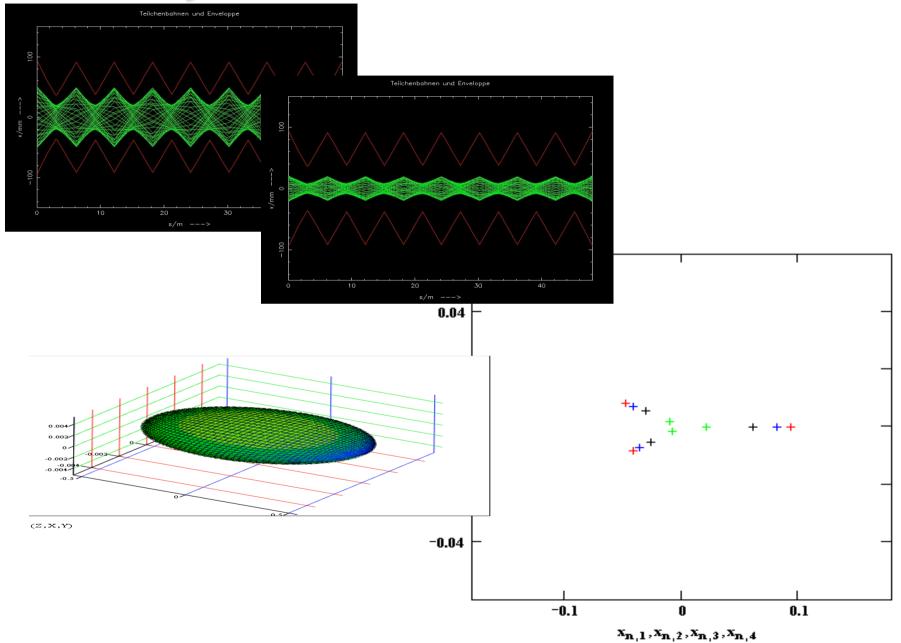


... and now the ellipse:

note for each turn x, x at a given position " s_1 " and plot in the phase space diagram



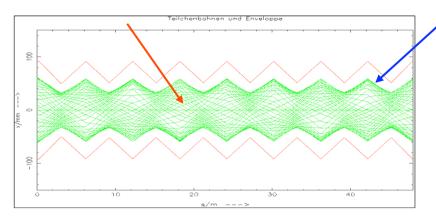
Emittance of the Particle Ensemble:



Emittance of the Particle Ensemble:

$$x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos(\Psi(s) + \phi)$$
 $\hat{x}(s) = \sqrt{\varepsilon} \sqrt{\beta(s)}$

$$\hat{x}(s) = \sqrt{\varepsilon} \sqrt{\beta(s)}$$



Gauß Particle Distribution:

$$\rho(x) = \frac{N \cdot e}{\sqrt{2\pi}\sigma_x} \cdot e^{-\frac{1}{2}\frac{x^2}{\sigma_x^2}}$$

particle at distance 1σ from centre

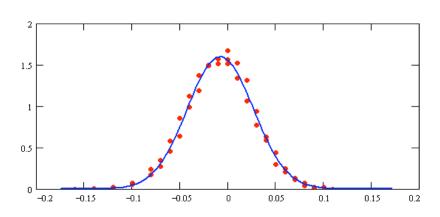
↔ 68.3 % of all beam particles

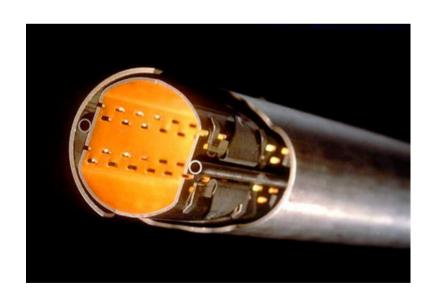
single particle trajectories, $N \approx 10^{-11}$ per bunch

LHC:
$$\beta = 180 \, m$$

$$\varepsilon = 5 * 10^{-10} m \, rad$$

$$\sigma = \sqrt{\varepsilon * \beta} = \sqrt{5*10^{-10} m*180 m} = 0.3 mm$$





aperture requirements: $r_0 = 12 * \sigma$