II a Bit of Theory

Luminosity Run of a typical storage ring:

LHC Storage Ring: Protons accelerated and stored for 12 hours
distance of particles travelling at about $v \approx c$

$$
L=10^{10}-10^{11} \mathrm{~km}
$$

... several times Sun - Pluto and back \&
intensity ($\mathbf{1 0}^{11}$)

\rightarrow guide the particles on a well defined orbit (,,design orbit")
\rightarrow focus the particles to keep each single particle trajectory within the vacuum chamber of the storage ring, i.e. close to the design orbit.

1.) Introduction and Basic Ideas

"... in the end and after all it should be a kind of circular machine"
\rightarrow need transverse deflecting force

Lorentz force

$$
\vec{F}=q^{*}(*+\vec{v} \times \vec{B})
$$

typical velocity in high energy machines:

$$
v \approx c \approx 3 * 10^{8} \mathrm{~m} / \mathrm{s}
$$

Example:)

$$
\begin{gathered}
B=1 T \rightarrow F=q * 3 * 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} * 1 \frac{\mathrm{VS}}{\mathrm{~m}^{2}} \\
F=q * \underbrace{300 \frac{M V}{m}} \\
\text { equivalent el. field } \ldots \rho \quad E
\end{gathered}
$$

technical limit for el. field: $>$

$$
E \leq 1 \frac{M V}{m}
$$

old greek dictum of wisdom:

if you are clever, you use magnetic fields in an accelerator wherever it is possible.

The ideal circular orbit

circular coordinate system
condition for circular orbit:

$$
\begin{array}{ll}
\text { Lorentz force } & \boldsymbol{F}_{L}=\boldsymbol{e} v \boldsymbol{B} \\
\text { centrifugal force } & \boldsymbol{F}_{\text {centr }}=\frac{\gamma \boldsymbol{m}_{0} v^{2}}{\rho} \\
& \left.\frac{\gamma m_{0} v^{2}}{\rho}=\boldsymbol{e}\right\rangle \boldsymbol{B}
\end{array}
$$

$$
\begin{aligned}
& \frac{\boldsymbol{p}}{\boldsymbol{e}}=\boldsymbol{B} \rho \\
& \boldsymbol{B} \rho=\text { "beam rigidity" }
\end{aligned}
$$

2.) The Magnetic Guide Field

Dipole Magnets:

define the ideal orbit
homogeneous field created by two flat pole shoes

$$
B=\frac{\mu_{0} n I}{h}
$$

Normalise magnetic field to momentum:
convenient units:

$$
\frac{p}{e}=B \rho \quad \longrightarrow \quad \frac{1}{\rho}=\frac{e B}{p} \quad B=[T]=\left[\frac{V s}{m^{2}}\right] \quad p=\left[\frac{G e V}{c}\right]
$$

Example LHC:

$$
\left.\begin{array}{l}
\boldsymbol{B}=8.3 \boldsymbol{T} \\
\boldsymbol{p}=7000 \frac{\boldsymbol{G e V}}{\boldsymbol{c}}
\end{array}\right\}
$$

$$
\begin{aligned}
\frac{1}{\rho} & =\boldsymbol{e} \frac{8.3 \mathrm{~V} / \boldsymbol{m}^{2}}{7000 * 10^{9} \boldsymbol{e V} / \mathrm{c}}=\frac{8.3 \mathrm{~s} * 3 * 10^{8} \mathrm{~m} / \mathrm{s}}{7000 * 10^{9} \mathrm{~m}^{2}} \\
\frac{1}{\rho} & =0.333 \frac{8.3}{7000} 1 / \boldsymbol{m}
\end{aligned}
$$

The Magnetic Guide Field

$$
\begin{aligned}
\rho=2.53 \mathrm{~km} \quad \longrightarrow \quad 2 \pi \rho & =17.6 \mathrm{~km} \\
& \approx 66 \%
\end{aligned}
$$

rule of thumb: $\quad \frac{1}{\rho} \approx 0.3 \frac{B[T]}{p[G e V / c]}$

The Problem:

LHC Design Magnet current: $I=11850$ A
and the machine is 27 km long !!!
Ohm's law: $\quad U=R^{*} I, \quad P=R^{*} I^{2}$

Problem:

reduce ohmic losses to the absolute minimum

The Solution: super conductivity

Super Conductivity

discovery of sc. by H. Kammerling Onnes, Leiden 1911

LHC 1.9 K cryo plant

Superfluid helium:
 1.9 K cryo system

Phase diagramm of Helium

thermal conductivity of fl. Helium in supra fluid state

LHC: The -1232- Main Dipole Magnets

required field quality: $\Delta B / B=10^{-4}$

$6 \mu \mathrm{~m}$ Ni-Ti filament
2.) Focusing Properties - Transverse Beam Optics

$$
\overline{F(t)}=\underbrace{q(\overline{E(t)}}_{\mathrm{F}_{\mathrm{E}}}+\overline{v(t)} \underbrace{\otimes \overline{B(t)}}_{\mathrm{F}_{\mathrm{B}}})
$$

Linear Accelerator

Circular Accelerator

2.) Focusing Properties - Transverse Beam Optics

classical mechanics: pendulum

there is a restoring force, proportional
to the elongation x :

$$
m * \frac{d^{2} x}{d t^{2}}=-c * x
$$

general solution: free harmonic oszillation

$$
x(t)=A^{*} \cos (\omega t+\varphi)
$$

Storage Ring: we need a Lorentz force that rises as a function of the distance to \qquad
\qquad the design orbit

$$
F(x)=q^{*} v^{*} B(x)
$$

Quadrupole Magnets:

required: focusing forces to keep trajectories in vicinity of the ideal orbit
linear increasing Lorentz force
linear increasing magnetic field

$$
B_{y}=g \boldsymbol{x} \quad B_{x}=g \boldsymbol{y}
$$

normalised quadrupole field:
\qquad

$$
k=\frac{g}{p / e}
$$

simple rule:

$$
k=0.3 \frac{g(\boldsymbol{T} / \boldsymbol{m})}{p(\boldsymbol{G e} V / c)}
$$

LHC main quadrupole magnet

$$
\boldsymbol{g} \approx 25 \ldots 220 \boldsymbol{T} / \boldsymbol{m}
$$

what about the vertical plane:
... Maxwell

$$
\vec{\nabla} \times \overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{X}}+\frac{\partial \overrightarrow{\mathrm{E}} / \mathrm{t}}{\partial \mathrm{t}}=0 \quad \Rightarrow \quad \frac{\partial B_{y}}{\partial x}=\frac{\partial B_{x}}{\partial y}=g
$$

Focusing forces and particle trajectories:

normalise magnet fields to momentum
(remember: $\boldsymbol{B} \boldsymbol{*} \boldsymbol{\rho}=\boldsymbol{p} / \boldsymbol{q}$)

Dipole Magnet

$$
\frac{B}{p / q}=\frac{B}{B \rho}=\frac{1}{\rho}
$$

Quadrupole Magnet

$$
k:=\frac{g}{p / q}
$$

3.) The Equation of Motion:

$$
\frac{B(x)}{p / e}=\frac{1}{\rho}+k x+\frac{1}{2!} m\left(x^{2}+\frac{1}{3!}\right) / x^{3}+\ldots
$$

only terms linear in x, y taken into account
dipole fields quadrupole fields

Separate Function Machines:

Split the magnets and optimise them according to their job:
bending, focusing etc

Example:
heavy ion storage ring TSR

The Equation of Motion:

*

Equation for the horizontal motion:

$$
x^{\prime \prime}+x\left(\frac{1}{\rho^{2}}+k\right)=0
$$

$x=$ particle amplitude
$x^{\prime}=$ angle of particle trajectory (wrt ideal path line)
$*$
Equation for the vertical motion:

$$
\begin{gathered}
\frac{1}{\rho^{2}}=0 \quad \text { no dipoles ... in general ... } \\
\boldsymbol{k} \leftrightarrow-\boldsymbol{k} \quad \text { quadrupole field changes sign } \\
y^{\prime \prime}-k y=0
\end{gathered}
$$

4.) Solution of Trajectory Equations

Define ... hor. plane: $K=1 / \rho^{2}+k$
... vert. Plane: $K=-k$

$$
x^{\prime \prime}+\boldsymbol{K} x=0
$$

Differential Equation of harmonic oscillator ... with spring constant K

Ansatz: Hor. Focusing Quadrupole $K>0$:

$$
\begin{aligned}
& x(s)=x_{0} \cdot \cos (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K|} s) \\
& x^{\prime}(s)=-x_{0} \cdot \sqrt{|K|} \cdot \sin (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \cos (\sqrt{|K|} s)
\end{aligned}
$$

For convenience expressed in matrix formalism:

$$
\binom{x}{x^{\prime}}_{s 1}=M_{f o c} *\binom{x}{x^{\prime}}_{s 0}
$$

$$
\boldsymbol{M}_{f o c}=\left(\begin{array}{cc}
\cos (\sqrt{|\boldsymbol{K}|}) & \frac{1}{\sqrt{\mid \boldsymbol{K}} \mid} \sin (\sqrt{|\boldsymbol{K}|} l \\
-\sqrt{|\boldsymbol{K}|} \sin (\sqrt{|\boldsymbol{K}|}) & \cos (\sqrt{|\boldsymbol{K}|})
\end{array}\right)
$$

hor. defocusing quadrupole:

$$
\boldsymbol{x}^{\prime \prime}-\boldsymbol{K} \boldsymbol{x}=0
$$

Ansatz: Remember from school

$$
x(s)=a_{1} \cdot \cosh (\omega s)+a_{2} \cdot \sinh (\omega s)
$$

$$
M_{\text {def oc }}=\left(\begin{array}{cc}
\cosh \sqrt{|K|} l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|} l \\
\sqrt{|K|} \sinh \sqrt{|K|} l & \cosh \sqrt{|K|} l
\end{array}\right)
$$

drift space:

$$
K=0
$$

$$
x(s)=x_{0}^{\prime} * s
$$

$$
M_{d r i f t}=\left(\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right)
$$

! with the assumptions made, the motion in the horizontal and vertical planes are independent , ... the particle motion in $x \& y$ is uncoupled"

Transformation through a system of lattice elements
combine the single element solutions by multiplication of the matrices
$M_{\text {total }}=M_{Q F} * M_{D} * M_{Q D} * M_{B e n d} * M_{D^{*} \ldots . .}$.

$$
\binom{x}{x^{\prime}}_{s 2}=M\left(s_{2}, s_{1}\right) *\binom{x}{x^{\prime}}_{s 1}
$$

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator, ,
typical values in a strong foc. machine:

5.) Orbit \& Tune:

Tune: number of oscillations per turn
64.31
59.32

Relevant for beam stability:

non integer part

LHC revolution frequency: 11.3 kHz
$0.31 * 11.3=3.5 \mathbf{k H z}$

LHC Operation: Beam Commissioning

First turn steering "by sector:"
aOne beam at the time \square Beam through 1 sector ($1 / 8$ ring), correct trajectory, open collimator and move on.

... or a third one or ... $1 \mathbf{1 0}^{10}$ turns

II.) The Ideal World:

Particle Trajectories, Beams \& Bunches

Astronomer Hill:

differential equation for motions with periodic focusing properties "Hill's equation"

Example: particle motion with periodic coefficient

equation of motion: $\quad x^{\prime \prime}(s)-k(s) x(s)=0$
restoring force \neq const,
$k(s)=$ depending on the position s $k(s+L)=k(s)$, periodic function

we expect a kind of quasi harmonic oscillation: amplitude \& phase will depend on the position s in the ring.

6.) The Beta Function

„it is convenient to see"
... after some beer ... general solution of Mr Hill can be written in the form:

Ansatz:

$$
x(s)=\sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos (\psi(s)+\phi) \quad \begin{aligned}
& \varepsilon, \Phi=\text { integration constants } \\
& \text { determined by initial conditions }
\end{aligned}
$$

$\beta(s)$ periodic function given by focusing properties of the lattice \leftrightarrow quadrupoles

$$
\beta(s+L)=\beta(s)
$$

ε beam emittance $=$ woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.
scientifiquely spoken: area covered in transverse x, x^{\prime} phase space ... and it is constant !!!
$\Psi(s)=$,phase advance" of the oscillation between point „0" and „s" in the lattice. For one complete revolution: number of oscillations per turn „Tune"

$$
Q_{y}=\frac{1}{2 \pi} \cdot \int \frac{d s}{\beta(s)}
$$

6.) The Beta Function

Amplitude of a particle trajectory:

$$
x(s)=\sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos (\psi(s)+\varphi)
$$

Maximum size of a particle amplitude

$$
\hat{x}(s)=\sqrt{\varepsilon} \sqrt{\beta(s)}
$$

β determines the beam size (... the envelope of all particle trajectories at a given position " s " in the storage ring.

It reflects the periodicity of the magnet structure.

7.) Beam Emittance and Phase Space Ellipse

$$
\varepsilon=\gamma(s) * x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime}(s)^{2}
$$

ε beam emittance $=$ woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.
Scientifiquely spoken: area covered in transverse x, x^{\prime} phase space ... and it is constant !!!!

Particle Tracking in a Storage Ring

Calculate x, x^{\prime} for each linear accelerator element according to matrix formalism
plot x, x^{\prime} as a function of "s"

... and now the ellipse:
note for each turn x, x^{\prime} at a given position ", s_{1} " and plot in the phase space diagram

Emittance of the Particle Ensemble:

Emittance of the Particle Ensemble:

$$
\text { Particle Distribution: } \quad \rho(x)=\frac{N \cdot e}{\sqrt{2 \pi} \sigma_{x}} \cdot e^{-\frac{1}{2} \frac{x^{2}}{\sigma_{x}^{2}}}
$$

particle at distance 1σ from centre
$\leftrightarrow 68.3 \%$ of all beam particles
single particle trajectories, $N \approx 10{ }^{11}$ per bunch

$$
\begin{array}{ll}
L H C: & \beta=180 \mathrm{~m} \\
& \varepsilon=5 * 10^{-10} \mathrm{mrad}
\end{array}
$$

$$
\sigma=\sqrt{\varepsilon^{*} \beta}=\sqrt{5^{*} 10^{-10} \mathrm{~m}^{*} 180 \mathrm{~m}}=0.3 \mathrm{~mm}
$$

aperture requirements: $r_{0}=12 * \sigma$

