III Storage Rings

Lattice Design and Acceleration

III.) The "not so ideal" World Lattice Design in Particle Accelerators

1952: Courant, Livingston, Snyder:

Theory of strong focusing in particle beams

Recapitulation: ...the story with the matrices !!!

Equation of Motion:

Solution of Trajectory Equations

$$x'' + K x = 0$$
 $K = 1/\rho^2 - k$... hor. plane:
 $K = k$... vert. Plane:

$$\begin{pmatrix} \boldsymbol{x} \\ \boldsymbol{x}' \end{pmatrix}_{s1} = \boldsymbol{M} * \begin{pmatrix} \boldsymbol{x} \\ \boldsymbol{x}' \end{pmatrix}_{s0}$$

 $M_{total} = M_{QF} * M_{D} * M_{B} * M_{D} * M_{QD} * M_{D} * \dots$

8.) Lattice Design: "... how to build a storage ring"

Geometry of the ring: $B * \rho = p / e$

p = momentum of the particle, $\rho = curvature radius$

 $B\rho = beam \ rigidity$

Circular Orbit: bending angle of one dipole

$$\alpha = \frac{ds}{\rho} \approx \frac{dl}{\rho} = \frac{Bdl}{B\rho}$$

The angle run out in one revolution must be 2π , so for a full circle

$$\alpha = \frac{\int Bdl}{B\rho} = 2\pi$$

$$\int Bdl = 2\pi \frac{p}{q}$$

... defines the integrated dipole field around the machine.

7000 GeV Proton storage ring dipole magnets N = 1232l = 15 mq = +1 e

 $\int B \, dl \approx N \, l \, B = 2\pi \, p / e$

$$B \approx \frac{2\pi \ 7000 \ 10^9 eV}{1232 \ 15 \ m} \ 3 \ 10^8 \frac{m}{s} \ e = \frac{8.3 \ Tesla}{1232 \ 15 \ m}$$

LHC: Lattice Design the ARC 90° FoDo in both planes

MQ: main quadrupole

equipped with additional corrector coils

MB: main dipole MQ: main quadrupole MQT: Trim quadrupole MQS: Skew trim quadrupole MO: Lattice octupole (Landau damping) MSCB: Skew sextupole Orbit corrector dipoles MCS: Spool piece sextupole MCDO: Spool piece 8 / 10 pole BPM: Beam position monitor + diagnostics

Name	Quantity	Purpose		
MB	1232	Main dipoles		
MQ	400	Main lattice quadrupoles		
MSCB	376	Combined chromaticity/ closed orbit correctors		
MCS	2464	Dipole spool sextupole for persistent currents at injection		
MCDO	1232	Dipole spool octupole/decapole for persistent currents		
МО	336	Landau octupole for instability control		
MQT	256	Trim quad for lattice correction		
MCB	266	Orbit correction dipoles		
MQM	100	Dispersion suppressor quadrupoles		
MQY	20	Enlarged aperture quadrupoles		
In total 6628 cold magnets				

Magnets for the LHC, total budget, every magnet has a role in the optics design

FoDo-Lattice

A magnet structure consisting of focusing and defocusing quadrupole lenses in alternating order with nothing in .

(Nothing = elements that can be neglected on first sight: drift, bending magnets, RF structures ... and especially experiments...)

Starting point for the calculation: in the middle of a focusing quadrupole Phase advance per cell $\mu = 45^{\circ}$,

 \rightarrow calculate the twiss parameters for a periodic solution

9.) Insertions

β-Function in a Drift:

$$\beta(\ell) = \beta_0 + \frac{\ell^2}{\beta_0}$$

At the end of a long symmetric drift space the beta function reaches its maximum value in the complete lattice. -> here we get the largest beam dimension.

-> keep l as small as possible

7 sigma beam size inside a mini beta quadrupole

... clearly there is an

... unfortunately ... in general high energy detectors that are installed in that drift spaces are a little bit bigger than a few centimeters ...

The Mini-β Insertion:

$$R = L * \Sigma_{react}$$

production rate of events is determined by the cross section Σ_{react} and a parameter L that is given by the design of the accelerator: ... the luminosity

$$L = \frac{1}{4\pi e^2 f_0 b} * \frac{I_1 * I_2}{\sigma_x^* * \sigma_y^*}$$

Example: Luminosity run at LHC

$$\beta_{x,y} = 0.55 m \qquad f_0 = 11.245 \, kHz$$

$$\varepsilon_{x,y} = 5*10^{-10} \, rad \, m \qquad n_b = 2808$$

$$\sigma_{x,y} = 17 \, \mu m \qquad L = \frac{1}{4\pi e^2 f_0 n_b} * \frac{I_{p1} I_{p2}}{\sigma_x \sigma_y}$$

 $I_{p} = 584 \, mA$

$$L = 1.0 * 10^{34} / cm^2 s$$

Mini-β *Insertions*: *Betafunctions*

A mini- β insertion is always a kind of special symmetric drift space. \rightarrow greetings from Liouville

Mini-β Insertions: some guide lines

* calculate the periodic solution in the arc

* *introduce the drift space needed for the insertion device (detector ...)*

* put a quadrupole doublet (triplet ?) as close as possible

* introduce additional quadrupole lenses to match the beam parameters to the values at the beginning of the arc structure

The LHC Insertions

Acceleration: Energy Gain

... we have to start again from the basics

Lorentz, force

in long. direction the B-field creates no force

v || *B*

acc. force is given by the electr. Field

In relativistic dynamics, energy and momentum satisfy the relation:

$$E^{2} = E_{0}^{2} + p^{2}c^{2} \qquad (E = E_{0} + W)$$
$$dE = \int F ds = v dp$$

Hence:

and the kinetic energy gained from the field along the z path is:

$$dW = dE = eE_z ds \implies W = e\int E_z ds = eV$$

11.) Electrostatic Machines

(Tandem -) van de Graaff Accelerator

Problems: * Particle energy limited by high voltage discharges * high voltage can only be applied once per particle or twice ?

Electro Static Accelerator: 12 MV-Tandem van de Graaff Accelerator at MPI Heidelberg

12.) Linear Accelerator 1928, Wideroe

$$\omega_s(t) = \omega_{rf}(t) = \frac{q}{\gamma(t) * m_0} * B$$

keep the synchronisation condition by varying the rf frequency

 ω_{RF} decreases with time

The Synchrotron (Mac Millan, Veksler, 1945)

13.) The Acceleration

Where is the acceleration?

Install an RF accelerating structure in the ring and adjust the phase (the timing) between particle and RF-Voltage in the right way: "Synchronisation"

500 MHz cavities in an electron storage ring

B. Salvant N. Biancacci

14.) The Acceleration for △p/p≠0 "Phase Focusing" below transition

... so sorry, here we need help from Albert:

... some when the particles do not get faster anymore

kinetic energy of a proton

15.) The Acceleration for Δp/p≠0 "Phase Focusing" above transition

Focussing effect in the longitudinal direction keeping the particles close together ... forming a "bunch"

... and how do we accelerate now ??? with the dipole magnets !

The RF system: IR4

Nb on Cu cavities @4.5 K (=LEP2) Beam pipe diam.=300mm

Bunch length (4 σ)	ns	1.06
Energy spread (2σ)	<i>10</i> -3	0.22
Synchr. rad. loss/turn	keV	7
Synchr. rad. power	kW	3.6
RF frequency	M	400
	Hz	
Harmonic number		35640
RF voltage/beam	MV	<i>16</i>
Energy gain/turn	keV	485
Synchrotron	Hz	23.0
frequency		

RF Buckets & long. dynamics in phase space

