
IV.) Are there Any Problems ??? 

 sure there are 
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Beam Emittance corresponds to the area covered in the  
x, x´ Phase Space Ellipse 

Liouville: Area in phase space is constant. 

But so sorry ...  ε ≠ const ! 

●

Classical Mechanics:  

 phase space = diagram of the two canonical variables  
                  position    &  momentum                                           
                      x                         px 



According to Hamiltonian mechanics:     
phase space diagram relates the variables q and p 

Liouvilles Theorem: 

for convenience (i.e. because we are lazy bones) we use in accelerator theory: 

where βx= vx / c 

the beam emittance  
shrinks during  
acceleration   ε ~ 1 / γ 

q = position = x 
p = momentum = γmv = mcγβx 

ε 



1.)  A proton machine … or an electron linac … needs the highest aperture at injection energy !!! 
      as soon as we start to accelerate the beam size shrinks as γ -1/2 in both planes. 

2.) At lowest energy the machine will have the major aperture problems,  
       here we have to minimise  

3.) we need different beam optics adopted to the energy:  
     A Mini Beta concept will only be adequate at flat top.  

LHC injection  
optics at 450 GeV 

LHC mini beta  
optics at 7000 GeV 



Example: HERA proton ring 

injection energy: 40 GeV        γ = 43 
flat top  energy: 920 GeV        γ = 980 

emittance ε (40GeV)   = 1.2 * 10 -7 

                 ε (920GeV) = 5.1 * 10 -9 

7 σ beam envelope at E = 40 GeV  

… and at E = 920 GeV  



RF Acceleration-Problem: 
panta rhei !!! 
(Heraklit: 540-480 v. Chr.) 

Bunch length of Electrons ≈ 1cm just a stupid (and nearly wrong) example) 
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ν = 400MHz
c = λ ν

€ 

λ = 75 cm

€ 

λ = 75 cm

typical momentum spread of an electron bunch:  



 Dispersive and Chromatic Effects: Δp/p ≠ 0  

Are there any Problems ???  
       Sure there are !!! 

font colors due to  
pedagogical reasons 



Influence of external fields on the beam:  prop. to magn. field & prop. zu 1/p  

   

dipole magnet 

focusing lens 

particle having ...   
          to high energy 
          to low energy 
          ideal energy 



. ρ 

xβ 

Closed orbit for Δp/p > 0 

Matrix formalism: 

Dispersion 
 Example: homogeneous dipole field 

xβ 



Example  

Amplitude of Orbit oscillation  
                           contribution due to Dispersion ≈ beam size 

           Dispersion must vanish at the collision point  

Calculate D, D´:  ... takes a couple of sunny Sunday evenings ! 

or expressed as 3x3 matrix 

! 



Influence of external fields on the beam:  prop. to magn. field & prop. zu 1/p  

   

focusing lens 

particle having ...   
          to high energy 
          to low energy 
          ideal energy 

definition of chromaticity: 

… which acts like a quadrupole error in the machine  
and leads to a tune spread: 



Problem: chromaticity is generated by the lattice itself !! 

Q' is a number indicating the size of the tune spot in the working diagram,  
Q' is always created if the beam is focussed  
    it is determined by the focusing strength k of all quadrupoles 

k = quadrupole strength 
β = betafunction indicates the beam size … and even more the sensitivity of   
      the beam to external fields 

Example: LHC 

                     Q' = 250  
      Δ p/p = +/- 0.2 *10-3 

        Δ Q = 0.256 … 0.36 

 Some particles get very close to  
    resonances and are lost  

    in other words: the tune is not a point 
                          it is a pancake 

… what is wrong about Chromaticity: 



Tune signal for a nearly  
uncompensated cromaticity 
( Q' ≈ 20 )  

Ideal situation: cromaticity well corrected, 
( Q' ≈ 1 ) 



 Need: additional quadrupole strength for each momentum deviation Δp/p 

1.) sort the particles acording to their momentum 

… using the dispersion function 

2.) apply a magnetic field that rises quadratically with x (sextupole field)  

linear rising  
„gradient“:  



N 

Sextupole Magnets:  

S 

S N 

corrected chromaticity 

k1 normalised quadrupole strength  

k2 normalised sextupole  strength  

considering a single cell:  



Some Golden Rules to Avoid Trouble 



€ 

xco(s) =
β(s) * 1

ρs1
βs1 *cos(ψs1 −ψs −πQ)ds∫
2sinπQ

Assume: Tune = integer 

€ 

Q =1 → 0

Integer tunes lead to a resonant increase  
of the closed orbit amplitude in presence of  
the smallest dipole field error. 

Qualitatively spoken: 

I.) Golden Rule number one:   
                  do not focus the beam !   

 Problem: Resonances 



Tune and Resonances 

m*Qx+n*Qy+l*Qs = integer 

Qx =1.0 Qx =1.3 

Qy =1.0 

Qy =1.3 

Qx =1.5 

Qy =1.5 

 Tune diagram up to 3rd order 

… and  up to 7th order 

Homework for the operateurs:  
find a nice place for the tune  
where against all probability  
the beam will survive 



II.) Golden Rule number two:   Never accelerate charged particles !  

Transport line with quadrupoles Transport line with quadrupoles and space charge 

KSC 

Fdef 



Golden Rule number two:   Never accelerate charged particles !  
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... at low speed the particles  
repel each other  

Problem at low energies  

Linac 2    Ekin=60 MeV   
         Linac 4  Ekin=150 MeV  

€ 

ΔQx,y = −
r0 N

2πεx,yβ γ
2

Tune Shift due to Space Charge Effect 



Courtesy W. Herr 

€ 

ΔQx =
βx
* * rp *Np

2π γ p (σ x +σ y ) *σ x

the colliding bunches influence each other   
 change the focusing properties of the ring !!  

   

Qx 

Qx 

and again the resonances !!!  

most simple case:  
             linear beam beam tune shift 

III.) Golden Rule number three:  

 Never Collide the Beams !  

25 ns 



LHC logbook: Sat 9-June “Late-Shift” 

18:18h injection for physics 
                             clean injection ! 

but particle losses when beams  
are brought into collision 



IV.) Golden Rule Number 4:  Never use Magnets  

“effective magnetic length” 



Again: the phase space ellipse  
 for each turn write down – at a given  

    position „s“ in the ring – the  
    single partilce amplitude x  
    and the angle x´... and plot it. 

● 

Clearly there is another problem ... 
 ... if it were easy everybody could do it  

A beam of 4 particles  
– each having a slightly different emittance:  



Installation of a weak ( !!! ) sextupole magnet 

The good news: sextupole fields in accelerators  
cannot be treated analytically anymore. 
 no equatiuons; instead: Computer simulation 
„ particle tracking “  

● 



 Catastrophy !  

● 

Effect of a strong ( !!! ) Sextupole … 

„dynamic aperture“ 



Golden Rule XXL:   COURAGE  

and with a lot of effort from Bachelor / Master / Diploma / PhD  
 and Summer-Students the machine is running !!! 

thank’x for your help and have a lot of fun  
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