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Lecture 1: Preliminaries

» Probability Density Function vs. Likelihood

» Monte Carlo

» Point estimates and maximum likelihood estimators
Lecture 2: Building a probability model

» A generic template for high energy physics

» Examples of different “narratives”
Lecture 3: Hypothesis testing

» The Neyman-Pearson lemma and the likelihood ratio

» Composite models and the profile likelihood ratio

» Review of ingredients for a hypothesis test

Lecture 4: Limits & Confidence Intervals
» The meaning of confidence intervals as inverted hypothesis tests
» Asymptotic properties of likelihood ratios
» Bayesian approach
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A General Purpose Statistical Model
(beginning of lecture 3)
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Visualizing probability models ) (‘T’
| will represent PDFs graphically as below (directed acyclic graph)
» eg. a Gaussian G(x|u, o) is parametrized by (u, o)

» every node is a real-valued function of the nodes below
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Marked Poisson Process ) ooy ano (‘Tf’

PPPPPPPPPPPPPPP

Channel: a subset of the data defined by some selection
requirements.

» eg. all events with 4 electrons with energy > 10 GeV
» n. number of events observed in the channel
» . number of events expected in the channel

Discriminating variable: a property of those events that can be
measured and which helps discriminate the signal from background

» eg. the invariant mass of two particles
» fix): the p.d.f. of the discriminating variable x

D={xy,...,x,}

Marked Poisson Process: "

f(D|v) = Pois(n|v) H f(ze)

e=1
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Mixture model I
Sample: a sample of simulated events corresponding to particular
type interaction that populates the channel.

» statisticians call this a mixture model

f(ﬂ?)zi ST vf@), M= ), v

Vtot 1
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Parametrizing the model o = (u,0) ) “T’
Parameters of interest (u): parameters of the theory that modify the
rates and shapes of the distributions, eg.

» the mass of a hypothesized particle

» the “signal strength” u=0 no signal, u=1 predicted signal rate
Nuisance parameters (0 or ap): associated to uncertainty in:

» response of the detector (calibration)
» phenomenological model of interaction in non-perturbative regime

Lead to a parametrized model: v — v(a), f(z) — f(z|a)

:j:

f(D|a) = Pois(n|v(a f(z.|a)

e:1

Kyle Cranmer (NYU) CERN Summer School, July 2013 60




Incorporating Systematic Effects ) «Tﬁ

Tabulate effect of individual variations of sources of systematic uncertainty
- typically one at a time evaluated at nominal and “+ 1 0~

» use some form of interpolation to parametrize p* variation in terms of
nuisance parameter o,

> 10— Z+jets |to Diboson
8 105 ATLAS ) data J p
0 I Z+jets
2 40 H— eevv (m =400 GeV) [ top syst 1
2 10° f L dt = 35 pb” 55\;21";;”
(I>) > \/g =7 TeV - Multijet SySt 2
w10 - —— Signal (m =400 GeV)
10 .
1
10
102
-3
107 50 100 150 200 250
EMS* [GeV] n
f(D|a) = Pois(n|v(a)) | | flze|a)
e=1
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Incorporating Systematic Effects ) ((Tﬁ

Tabulate effect of individual variations of sources of systematic uncertainty
- typically one at a time evaluated at nominal and “+ 1 0~

» use some form of interpolation to parametrize p* variation in terms of
nuisance parameter o,

s 1.7 S L ]
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; 104 H— eevv (mH=4OO GeV) |:|to.p - -
5 10° Jra-se' BBV ™ 3 E
_ Multi - SRR ]
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10 s C B
1 - .
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10 0;~J—T_-r-:|| ........ ||E
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f(D|a) = Pois(n|v(a)) | | flze|a)
e=1
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Incorporating Systematic Effects ) (@’
Tabulate effect of individual variations of sources of systematic uncertainty
- typically one at a time evaluated at nominal and “+ 1 0~

» use some form of interpolation to parametrize p* variation in terms of
nuisance parameter o,
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Visualizing the model for one channel ) “T’
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Visualizing the model for one channel ) ((T"
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Simultaneous multi-channel model ) e, @

Simultaneous Multi-Channel Model: Several disjoint regions of
the data are modeled simultaneously. ldentification of common

parameters across many channels requires coordination between
groups such that meaning of the parameters are reaIIy the same.

fsim(Dsim’a) — H POlS nc‘yc H fc ajce

cEchannels

Where DSlm — {D]_) cee 7Dcmax}

Control Regions: Some channels are not populated by signal
processes, but are used to constrain the nuisance parameters

» attempt to describe systematics in a statistical language
» Prototypical Example: “on/off” problem with unknown v,
f(n, m|u, vy) = Pois(n|u + vp) - Pois(m|Tuy)

v

signal region control region
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Constraint terms ) e A |
Often detailed statistical model for auxiliary measurements that
measure certain nuisance parameters are not available.

» one typically has MLE for «,, denoted a, and standard error

Constraint Terms: are idealized pdfs for the MLE.
fp(aplap) for pes
» common choices are Gaussian, Poisson, and log-normal
» New: careful to write constraint term a frequentist way
» Previously: m(ayplap) = fplap|ap)n(ay)  with uniform n

Simultaneous Multi-Channel Model with constraints:

fiot (Dsim, G|at) = H Pois(nc|ve(a)) H fe(Tee|ox H fo(aplop)

cEchannels e=1 pPES

where Dgim =1{D1,-- -, Depaf G ={ap} for peSs
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Conceptual building blocks ) «Tﬁ

A Ensemble
B .
Experiment
v =
~N
S N
C N\
Channel Constraint Term
Legend:
A "has many" Bs. ¢ € channels fp(ap I ap)
B "has a" C. f (xla) . .
Dashed is optional. c p € parameters with constraints
I
Event Sample
global observable
e € events s € samples
a
{1...nC}
We will use the following mnemonic index conventions:
Observable(s) Distribution Expected Number of Events ® ¢ € events
Yec foex19) Ys e b € bins
? \ e c € channels
“' e s € samples
Shape Variation Parameter
fscp(x | a, =X) @ 0, e p € parameters
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Example of Digital Publishing o, @

PARTICLE PHYSICS '

: T ~10l
g2 ROOT Object Browser 5’
Fim Edit View Opsons Inspect Clasees Help

File View Options |_A RooPlot of "x" |
£y wspace.root LI | [2—9_ “"_.-I'.;ggglgé—égl <:|| | I gl §1oo_—
All Folders Contents of "Y"ROOT Files/wspace.root" g E
S 80/
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D fuse rive ke ke oofit/'wo hkdir '
D ROOT Files MyWorkSpace ;1 “*_

) 20—

RooFit's Workspace now provides the

o

ability to save in a ROOT file the full : ' =

likelihood model, any priors you might ;“:‘:'““""" ]

want, and the minimal data necessary § R

to reproduce likelihood function. 3 :

Need this for combinations, as p-value < :

is not sufficient information for a proper g

combination. R Ly Y T e R o1
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HistFactory I
http://cds.cern.ch/record/1456844

Information Discussion (0) Files Linkbacks

Preprint
Report ‘
CERN-OPEN-2012-016
number
Title HistFactory: A tool for creating statistical models for use with RooFit and RooStats

Author(s) Cranmer, Kyle (New York U.) ; Lewis, George (New York U.) ; Moneta, Lorenzo (CERN) ;
Shibata, Akira (New York U.) ; Verkerke, Wouter (NIKHEF, Amsterdam)

Collaboration ROOT Collaboration

Abstract The HistFactory is a tool to build parametrized probability density functions (pdfs) in the
RooFit/RooStats framework based based on simple ROOT histograms organized in an XML file. The
pdf has a restricted form, but it is sufficiently flexible to describe many analyses based on template
histograms. The tool takes a modular approach to build complex pdfs from more primative
conceptual building blocks. The resulting PDF is stored in a RooWorkspace which can be saved to
and read from a ROOT file. This document describes the defaults and interface in HistFactory 5.32.

32 page documentation of HistFactory tool + manual
» currently a “living document”
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Combined ATLAS Higgs Search ) o, @

PARTICLE PHYSICS

State of the art: At the time of the discovery, the combined Higgs search included
100 disjoint channels and >500 nuisance parameters

» Models for individual channels come from about 11 sub-groups performing
dedicated searches for specific Higgs decay modes

» In addition low-level performance groups provide tools for evaluating
systematic effects and corresponding constraint terms

Higgs Decay SuIb;s:Cqu]ent Additional Sub-Channels Rzltflge L [fb~1]
H — yy — 9 sub-channels (pr, ®n, ® conversion) 110-150 4.9
ey {4e,2e2u,2u2e,4u} 110-600 4.8
H—Z7ZZ vy {ee,uu} ® {low pile-up, high pile-up} 200-280-600 4.7
lqq {b-tagged, untagged } 200-300-600 4.7
H— WW tviv {ee,eu,upu} ® {O—Jet, 1—Jet, VBF} 110-300-600 4.7
vqq' {e,u} ® {0-jet, 1-jet} 300-600 4.7
04y {eu} ®{0-jet} & {1-jet, VBF,VH} 110-150 4.7

N {e,u} ® {0-jet} @ {EM*® =20 GeV}

H—1t't (Thad3V & le.u} @ {1-jgt, VBF} 110-150 4.7
Thad Thad 2"V {1—jet} 110-150 4.7
Z— vV EMss € 1120 — 160,160 — 200, > 200 GeV} 110-130 4.6
VH — bb W—tv  pl e {<50,50— 100,100 —200,> 200 GeV} 110-130 4.7
Z— p% € {< 50,50 — 100, 100 — 200, > 200 GeV} 110-130 4.7
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Visualizing the combined model ) @Tg
State of the art: At the time of the discovery, the combined Higgs
search included 100 disjoint channels and >500 nuisance parameters

RooFit / RooStats: is the modeling language (C++) which provides
technologies for collaborative modeling

» provides technology to publish likelihood functions digitally
» and more, it's the full model so we can also generate pseudo-data

Ne

fiot (Dsim, 9|ax) = H Pois(n.|v.(a)) H (ce|at) H folap|ay)

cEchannels e=1 PES
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Lecture 3.5

Kyle Cranmer (NYU) CERN Summer School, July 2013 72




CENTER FOR m

Hypothesis Testing
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Hypothesis testing »Esa Y
One of the most common uses of statistics in particle physics is
Hypothesis Testing (e.g. for discovery of a new particle)

» assume one has pdf for data under two hypotheses:
 Null-Hypothesis, Ho: eg. background-only
- Alternate-Hypothesis H1: eg. signal-plus-background

» one makes a measurement and then needs to decide whether
to reject or accept Ho

0.05
0.045
0.04
0.035
0.03
0.025
0.02
0015
0.01 : : : , : : N
0005 [ fri ] NCTCIRERN ISP S
0 ‘\\\‘\LA"’ \‘\\\‘\\
60 80 100 120 140 160 180
Events Observed
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Hypothesis testing »Esa Y
One of the most common uses of statistics in particle physics is
Hypothesis Testing (e.g. for discovery of a new particle)

» assume one has pdf for data under two hypotheses:

 Null-Hypothesis, Ho: eg. background-only
- Alternate-Hypothesis H1: eg. signal-plus-background

» one makes a measurement and then needs to decide whether
to reject or accept Ho

005 IIIIIIIIIIIIIIIIIIIIIII
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Hypothesis testing ) e A |
Before we can make much progress with statistics, we need

to decide what it is that we want to do.
» first let us define a few terms:

Actual condition

Guilty Not guilty
- Rate of Type | error « False Positive
Verdict of True Positive (i.e. guilt reported
. 'guilty’ unfairly)
Rate of Type Il 5 Tyt oor
Decision
« Power = 1 — /8 False Negative

Verdict of (i.e. guilt
'not guilty' not detected)
Type Il error

True Negative
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- - CENTER FOR “
Hypothesis testing ) e A |
Before we can make much progress with statistics, we need

to decide what it is that we want to do.
» first let us define a few terms:

Actual condition

Guilty Not guilty
- Rate of Type | error « False Positive
Verdict of True Positive (i.e. guilt reported
. 'guilty’ unfairly)
Rate of Type Il 5 Tyt oor
Decision
« Power = 1 — /8 False Negative

Verdict of (i.e. guilt
'not guilty' not detected)
Type Il error

True Negative

Treat the two hypotheses asymmetrically
» the Null is special.
- Fix rate of Type | error, call it “the size of the test”
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- - CENTER FOR “
Hypothesis testing ) e A |
Before we can make much progress with statistics, we need

to decide what it is that we want to do.
» first let us define a few terms:

Actual condition

Guilty Not guilty
- Rate of Type | error « False Positive
Verdict of True Positive (i.e. guilt reported
. 'guilty’ unfairly)
Rate of Type Il 5 Tyt oor
Decision
« Power = 1 — /8 False Negative

Verdict of (i.e. guilt
'not guilty' not detected)
Type Il error

True Negative

Treat the two hypotheses asymmetrically
» the Null is special.
- Fix rate of Type | error, call it “the size of the test”
Now one can state “a well-defined goal”
» Maximize power for a fixed rate of Type | error
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Hypothesis testing »Esa Y
The idea of a 50 discovery criteria for particle physics is really a
conventional way to specify the size of the test
» usually 50 corresponds to o = 2.87 - 107
* eg. a very small chance we reject the standard model

In the simple case of number counting it is obvious what region is
sensitive to the presence of a new signal

» but in higher dimensions it is not so easy
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0
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Hypothesis testing )z (7

PARTICLE PHYSICS

The idea of a “5o " discovery criteria for particle physics is really a
conventional way to specify the size of the test

» usually 50 corresponds to o = 2.87 - 107

* eg. a very small chance we reject the standard model

In the simple case of number counting it is obvious what region is
sensitive to the presence of a new signal

» but in higher dimensions it is not so easy

3 :I: 5 ]
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m g o= & e
3! Ii:mz o * ? o ﬁ“ “n%;f-‘ﬂggaq:n 0 ”
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The Neyman-Pearson Lemma ) (‘T’

In 1928-1938 Neyman & Pearson developed a theory in which one
must consider competing Hypotheses:

- the Null Hypothesis H, (background only)
- the Alternate Hypothesis H; (signal-plus-background)

Given some probability that we wrongly reject the Null Hypothesis
a= P(x ¢ W|H,)

(Convention: if data falls in W then we accept Ho)

Find the region W such that we minimize the probability of wrongly
accepting the Hy (when Hi is true)

ﬁ:P(ZCEW‘Hl)
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The Neyman-Pearson Lemma ) e, @8

The region W that minimizes the probability of wrongly
accepting Hy is just a contour of the Likelihood Ratio

P($ Hl)
P(CIZ‘ H())

Any other region of the same size will have less power

> kq

The likelihood ratio is an example of a Test Statistic, eg.
a real-valued function that summarizes the data in a way
relevant to the hypotheses that are being tested
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A short proof of Neyman-Pearson ) (‘T’

Consider the contour of the likelihood ratio that has size a given
size (eg. probability under Hp is 1-(v)

Kyle Cranmer (NYU) CERN Summer School, July 2013 79




A short proof of Neyman-Pearson ) ?’

Now consider a variation on the contour that has the same
size
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A short proof of Neyman-Pearson ) ?’

P(\_|Hy) = P(/\y

Now consider a variation on the contour that has the same size
(eg. same probability under Ho)
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A short proof of Neyman-Pearson ) ?’

o P(\_|Hy) = P(_“|Ho)
P (x| Hy)

P(\_IH1) < P(\_|[Ho)k,

Because the new area is outside the contour of the likelihood
ratio, we have an inequality

< kg
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A short proof of Neyman-Pearson ) ?’

P(z|H,) P( KlHO) - P(/‘HO) P(z|Hy)
P(z[Ho) = o P(z|Hy) > Ko

P(\_|H1) < P(\_|Ho)k, P(_/|Hy) > P(_/|Ho)k,

And for the region we lost, we also have an inequality
Together they give...
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A short proof of Neyman-Pearson ) ?’

K\Ho /\Ho)

P(x|H,) P(x|H;)
Pla|Hy) = ™ PlalHy) ~
P(\_|H1) < P(\_|Ho)k, P(_/|H1) > P(_/|Ho)k,

P(\_|H1) < P(_/|H1)

The new region region has less power.
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2 discriminating variables ) (‘{

Often one uses the output of a neural network or multivariate algorithm in
place of a true likelihood ratio.

» That's fine, but what do you do with it?
» If you have a fixed cut for all events, this is what you are doing:

L1 L2

fo(q) fs(q) Ltot — Ll . L2

gio=InLijo=InL; +InLy =q + ¢

q
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Experiments vs. Events ) “Tﬁ
q2

|deally, you want to cut on

the likelihood ratio for your Folqu) Forslaia) y
experiment

[ L &

» equivalent to a sum of

log likelihood ratios Q12 = q1 —|— qo d1

Easy to see that includes
experiments where one

event had a high likelihood
and the other one was
relatively small

el q2

X1 L2
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An optimal way to combine ) (‘Tf’

Special case of.c.)ur L (x| Hy) H;Nchan Pois(ng|s; + b;) H;zl szfs(xzi)fb) ifo(wij)
general probability model @ =——+% = N . — :
from yesterday L (x| Ho) LI " Pois(ng|bi) 117" folai)
(no nuisance parameters) Nenan i sifs(2i;)
Q= s Db <1+ i )
bi fo(i5)
0.12 B (a) LEP ] ]
TCl —— Observed  my =115 GeV/? Instead of simply counting

-------- Expected for background

SETETEY Expected for signal
plus background

events, the optimal test statistic is
equivalent to adding events
weighted by

I

= &

& —
I I

Probability density

In(1+signal/background ratio)

S

=)

=
\

0.02 The test statistic is a map T.data —» R

T R T By repeating the experiment many
T= -21In(Q) times, you obtain a distribution for T
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p-values > @Tg
Instead of choosing to accept/reject Ho oS
=

one can compute the p-value

f(T1H,)
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p-values i
Instead of choosing to accept/reject Ho oS
=

one can compute the p-value

f(T1H,)
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OOOOOOOOOOOO

p-values P comeeeram

Instead of choosing to accept/reject Ho
one can compute the p-value / / T‘HO

If the model for the data

f (T | OL) depends on parameters «
the p-value also depends

on .

obs

TOO F(T|)dT = / £(D]a) O(T(D) — Ty) dD = P(T > Tpla)
88
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p-values > «Tﬁ
When the model has nuisance parameters, only reject the null if
p(a) sufficiently small for all values of the nuisance parameters.

If the model for the data

f (T | OL) depends on parameters «
the p-value also depends

on .

obs

TOO F(T|)dT = / £(D]a) O(T(D) — Ty) dD = P(T > Tpla)
89
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The Profile Likelihood Ratio oz @
Consider our general model with a single parameter of interest u

» let ©=0 be no signal, =1 nominal signal
In the LEP approach the likelihood ratio is equivalent to:

L(:u: 179) f(D‘,LL: 179)

QLEP = L(p=0,0) - f(D|lu=0,0)

» but this variable is sensitive to uncertainty on 6 and makes no use of
auxiliary measurements a

Alternatively, one can define profile likelihood ratio

A AN
A AN

M) = H0w) _ F(D.G11, 04D, G))
L(fz, 6) f(D, G|, 6)

» where 0(i; D, G) is best fit with u fixed (the constrained maximum
likelihood estimator, depends on data)

» and § and [ are best fit with both left floating (unconstrained)
» Tevatron used Qtev = Mp=1)/A(u=0) as generalization of QLep
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An example I

Essentially, you need to fit your model to the data twice:
once with everything floating, and once with signal fixed to O
L(p=0,0(u=0) f(D,Glu=0,0(u=0;D,G))

A =0) = — = -~ A
L(f1,0) f(D,G|f,0)
f(D,Gl,0) f(D,Glu=0,6(n=0;D,G))
~ [T T [T T T T ]
> - r ] > - r _
B4t ATLAS 1 31 ATLAS :
Lo VBF H(120)—tt—>lh - P12t VBF H(120)—tt—>lh -
o [ \s=14TeV, 3015 o I s=14TeV, 3015
=10 . =10 o
g i i g i
L 8 o L 8 .
61 - 6r -
ar- | f = 4t -
2 A 1 2 .
0 o St S E T I 2 o e N T N S 1 S I AT e e f T

0 160 180 % 80 100 120 140 160 180
M.. (GeV) M., (GeV)

60 80 100 120 14




Properties of the Profile Likelihood Ratio J 5. %
After a close look at the profile likelihood ratio

A
AN A

Ap) = L(p, 0(1)) _ f(D,G|u,0(u;D,G))
L(f, 0) (D, G|, 6)

one can see the function is independent of true values of 4
» though its distribution might depend indirectly

Wilks’s theorem states that under certain conditions the

distribution of -2 In A (u=uo) given that the true value of u is uo
converges to a chi-square distribution

» more on this tomorrow, but the important points are:

» “asymptotic distribution” is known and it is independent of 6!
- more complicated if parameters have boundaries (eg. = 0)

Thus, we can calculate the p-value for the background-only
hypothesis without having to generate Toy Monte Carlo!
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Toy Monte Carlo I

Explicitly build distribution by generating “toys” / pseudo experiments assuming a
specific value of x and v.

» randomize both main measurements @={x} and auxiliary measurements ¢={a}

» fit the model twice for the numerator and denominator of profile likelihood ratio
» evaluate -2In A(x) and add to histogram

Choice of x is straight forward: typically =0 and x=1, but choice of 8 is less clear
» more on this tomorrow

This can be very time consuming. Plots below use millions of “toy” pseudo-

experiments _
signalplusbackground signalplusbackground
10 E background ? background
E — test statistic data E — test statistic data
1 2-channel 5-channel
107
107 4.4
E 3-350 10-2 \\S . 0
102 = \\§\§
E 10-3 \Si\\\ S
10° NN
H 4 NN
10t
10+ AN
-5
10° N NN
100
NN
10'6 \\§§§§§q\\§§§ 2?%;F v v v by by by 1y 10_7 §§§§$\:§q§§$t N Lovvav bvv v bv v by by |-|LI_|_
0 5 1 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 45
Profile Likelihood Ratio Profile Likelihood Ratio
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Experimentalist Justification

CENTER FOR “
COSMOLOGY AND ==
PARTICLE PHYSICS '

So far this looks a bit like magic. How can you claim that you
incorporated your systematic just by fitting the best value of your
uncertain parameters and making a ratio?

It won't unless the the parametrization is sufficiently flexible.

So check by varying the settings of your simulation, and see if the
profile likelihood ratio is still distributed as a chi-square

Probability
)

—r
Qe
N

—r
i
(&)

10

-n
Tt **
>;I
(Tl
T+
=
I
;I.
L1
.III H
o
|| 1]
]|
1 = |
|
| 1.
11 ‘ ‘
Il I
1 I
Pl I | I | I | I

12 14 16 18 20

Nominal (Fast Sim)
miss

Smeared P;
Q? scale 1
Q? scale 2
Q? scale 3
Q? scale 4
Leading-order tt

Leading-order WWbb
Full Simulation

log Likelihood Ratio

Here it is pretty stable, but
it’s not perfect (and this is
a log plot, so it hides some
pretty big discrepancies)

For the distribution to be
independent of the nuisance
parameters your
parametrization must be
sufficiently flexible.
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A very important point P s (‘,’
If we keep pushing this point to the extreme, the physics problem
goes beyond what we can handle practically

The p-values are usually predicated on the assumption that the true
distribution is in the family of functions being considered

» €g. we have sufficiently flexible models of signal & background to
incorporate all systematic effects

» but we don’t believe we simulate everything perfectly

» ..and when we parametrize our models usually we have further
approximated our simulation.

+ nature -> simulation -> parametrization

At some point these approaches are limited by honest systematics
uncertainties (not statistical ones). Statistics can only help us so much

after this point. Now we must be physicists!
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