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What do these plots mean?
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Other examples of Confidence Intervals
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14 11. CKM quark-mixing matrix
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Figure 11.2: Constraints on the ρ̄, η̄ plane. The shaded areas have 95% CL. Color
version at end of book.

These values are obtained using the method of Refs. [6,95]. Using the prescription
of Refs. [102,118] gives λ = 0.2246 ± 0.0011, A = 0.832 ± 0.017, ρ̄ = 0.130 ± 0.018,
η̄ = 0.350± 0.013 [119]. The fit results for the magnitudes of all nine CKM elements are.

VCKM =




0.97428± 0.00015 0.2253 ± 0.0007 0.00347+0.00016

−0.00012

0.2252 ± 0.0007 0.97345+0.00015
−0.00016 0.0410+0.0011

−0.0007

0.00862+0.00026
−0.00020 0.0403+0.0011

−0.0007 0.999152+0.000030
−0.000045



 , (11.27)

and the Jarlskog invariant is J = (2.91+0.19
−0.11) × 10−5.

Fig. 11.2 illustrates the constraints on the ρ̄, η̄ plane from various measurements and
the global fit result. The shaded 95% CL regions all overlap consistently around the
global fit region, though the consistency of |Vub/Vcb| and sin 2β is not very good.
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A short proof of Neyman-Pearson
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The new region region has less power.

P (x|H1)
P (x|H0)

< k�
P (x|H1)
P (x|H0)

> k�

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H1)

P ( |H1) < P ( |H0) P ( |H1) > P ( |H0)k� k�

P (x|H1)
P (x|H0)

> k�



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN Summer School, July 2013

An optimal way to combine
Special case of our 
general probability model 
(no nuisance parameters)
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Instead of simply counting 
events, the optimal test statistic is 
equivalent to adding events 
weighted by 

ln(1+signal/background ratio)

The test statistic is a map T:data → �

By repeating the experiment many 
times, you obtain a distribution for TT=
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p-values
Instead of choosing to accept/reject H0

one can compute the p-value 
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Fig. 2: A graphical proof of the Neyman-Pearson lemma.

p-value is given by

p(↵) =

Z 1

T
0

f(T |↵)dT =

Z
f(D|↵) ✓(T (D) � T

0

) dD = P (T � T
0

|↵) , (10)

where T
0

is the value of the test statistic based on the observed data and ✓(·) is the Heaviside function.10

Usually the p-value is just written as p, but I have written it as p(↵) to make its ↵-dependence explicit.
Given that the p-value depends on ↵, how does one decide to accept or reject the null hypothesis?

Remembering that ↵
poi

takes on a specific value for the null hypothesis, we are worried about how the
p-value changes as a function of the nuisance parameters. It is natural to say that one should not reject the
null hypothesis if the p-value is larger than the size of the test for any value of the nuisance parameters.
Thus, in a frequentist approach one should either present p-value explicitly as a function of ↵

nuis

or take
its maximal (or supremum) value

p
sup

(↵
poi

) = sup

↵
nuis

p(↵
nuis

) . (11)

As a final note it is worth mentioning that the size of the test, which serves as the threshold for
rejecting the null hypothesis, is purely conventional. In most sciences conventional choices of the size
are 10%, 5%, or 1%. In particle physics, our conventional threshold for discovery is the infamous 5�
criterion – which is a conventional way to refer to ↵ = 2.87 · 10

�7. This is an incredibly small rate of
Type-I error, reflecting that claiming the discovery of new physics would be a monumental statement.
The origin of the 5� criterion has its roots in the fact that traditionally we lacked the tools to properly
incorporate systematics, we fear that there are systematics that may not be fully under control, and we
perform many searches for new physics and thus we have many chances to reject the background-only
hypothesis. We will return to this in the discussion of the look-elsewhere effect.

3.3 Excluded and allowed regions as confidence intervals
Often we consider a new physics model that is parametrized by theoretical parameters. For instance, the
mass or coupling of a new particle. In that case we typically want to ask what values of these theoretical

10The integral
R
dD is a bit unusual for a marked Poisson model, because it involves both a sum over the number of events

and an integral over the values of x
e

for each of those events.
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If the model for the data 
depends on parameters α 
the p-value also depends 
on α.
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p-values
When the model has nuisance parameters, only reject the null if 
p(α) sufficiently small for all values of the nuisance parameters.
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Fig. 2: A graphical proof of the Neyman-Pearson lemma.
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perform many searches for new physics and thus we have many chances to reject the background-only
hypothesis. We will return to this in the discussion of the look-elsewhere effect.
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depends on parameters α 
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on α.
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Confidence Interval
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Confidence Interval

What is a “Confidence Interval?
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Confidence Interval

What is a “Confidence Interval?

‣ you see them all the time:
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Confidence Interval

What is a “Confidence Interval?

‣ you see them all the time:

Want to say there is a 68% chance 
that the true value of (mW, mt) is in 
this interval
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Confidence Interval

What is a “Confidence Interval?

‣ you see them all the time:

Want to say there is a 68% chance 
that the true value of (mW, mt) is in 
this interval

‣ but that’s P(theory|data)!
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Confidence Interval

What is a “Confidence Interval?

‣ you see them all the time:

Want to say there is a 68% chance 
that the true value of (mW, mt) is in 
this interval

‣ but that’s P(theory|data)!

Correct frequentist statement is that 
the interval covers the true value 
68% of the time
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Confidence Interval

What is a “Confidence Interval?

‣ you see them all the time:

Want to say there is a 68% chance 
that the true value of (mW, mt) is in 
this interval

‣ but that’s P(theory|data)!

Correct frequentist statement is that 
the interval covers the true value 
68% of the time

‣ remember, the contour is a function of 
the data, which is random.  So it moves 
around from experiment to experiment
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Confidence Interval
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Confidence Interval

What is a “Confidence Interval?
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P (� � V ) =
⇥

V
⇥(�|x) =

⇥

V
d�

f(x|�)⇥(�)�
d�f(x|�)⇥(�)

‣Bayesian “credible interval” does 
mean probability parameter is 
in interval.  The procedure is 
very intuitive:
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Inverting Hypothesis Tests
There is a precise dictionary that explains how to move from from 
hypothesis testing to confidence intervals
‣ Type I error: probability interval does not cover true value of the 

parameters (eg. it is now a function of the parameters)
‣ Power is probability interval does not cover a false value of the 

parameters (eg. it is now a function of the parameters)
● We don’t know the true value, consider each point      as if it were true

What about null and alternate hypotheses?
‣ when testing a point     it is considered the null 
‣ all other points considered “alternate” 

So what about the Neyman-Pearson lemma & Likelihood ratio?
‣ as mentioned earlier, there are no guarantees like before 
‣ a common generalization that has good power is:

108

�0

f(x|�0)
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f(x|H0)
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Discovery in pictures

109
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 N
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+
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 )

b-only s+b
b-only p-valueobs

more discrepant

Discovery: test b-only (null: s=0 vs. alt: s>0)
• note, one-sided alternative.  larger N is “more discrepant” 

aka “CLb”
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Upper limits in pictures

110

N events

P(
 N

 |
 s

+
b
 )

b-only s95+b

5%

obs
ok excluded

more discrepant

aka “CLs+b”

What is meant by “95% upper limit” ?

See the picture below?
‣ ie. increase s, until the probability to have 

data “more discrepant” is < 5%
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How do we generalize?

111

14 11. CKM quark-mixing matrix
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Figure 11.2: Constraints on the ρ̄, η̄ plane. The shaded areas have 95% CL. Color
version at end of book.

These values are obtained using the method of Refs. [6,95]. Using the prescription
of Refs. [102,118] gives λ = 0.2246 ± 0.0011, A = 0.832 ± 0.017, ρ̄ = 0.130 ± 0.018,
η̄ = 0.350± 0.013 [119]. The fit results for the magnitudes of all nine CKM elements are.

VCKM =




0.97428± 0.00015 0.2253 ± 0.0007 0.00347+0.00016

−0.00012

0.2252 ± 0.0007 0.97345+0.00015
−0.00016 0.0410+0.0011

−0.0007

0.00862+0.00026
−0.00020 0.0403+0.0011

−0.0007 0.999152+0.000030
−0.000045



 , (11.27)

and the Jarlskog invariant is J = (2.91+0.19
−0.11) × 10−5.

Fig. 11.2 illustrates the constraints on the ρ̄, η̄ plane from various measurements and
the global fit result. The shaded 95% CL regions all overlap consistently around the
global fit region, though the consistency of |Vub/Vcb| and sin 2β is not very good.
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Neyman Construction example
For each value of   consider 

112
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Neyman Construction example

Let’s focus on a particular point 

113

x

f(x|�0)

f(x|�o)
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Neyman Construction example

114

x

f(x|�0)

Let’s focus on a particular point 
‣ we want a test of size 
‣ equivalent to a                   confidence interval on 
‣ so we find an acceptance region with        probability

f(x|�o)
�

1� �

100(1� �)% �
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Neyman Construction example

115

Let’s focus on a particular point 
‣No unique choice of an acceptance region
‣ here’s an example of a lower limit

f(x|�o)

1� �

x

f(x|�0)
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Neyman Construction example

116

x

f(x|�0)

�/2

1� �

Let’s focus on a particular point 
‣No unique choice of an acceptance region
‣ and an example of a central limit

f(x|�o)
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x

f(x|�0)

f(x|�0)
f(x|�best(x))

= k�

Neyman Construction example

117

Let’s focus on a particular point 
‣ choice of this region is called an ordering rule
‣ In Feldman-Cousins approach, ordering rule is the 
likelihood ratio.  Find contour of L.R. that gives size 

f(x|�o)

1� �

�
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Neyman Construction example
Now make acceptance region for every value of

118
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Neyman Construction example

This makes a confidence belt for θ

119
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Neyman Construction example

120

x

�

�0

This makes a confidence belt for θ
the regions of data in the confidence belt can be 
considered as consistent with that value of θ
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Neyman Construction example

121

x0

��

�+

x

�

Now we make a measurement
the points   where the belt intersects    a part of the 
confidence interval in   for this measurement    
eg. 

x0

� x0

�

[��, �+]
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For every point   , if it were true, the data would fall in its 
acceptance region with probability  
If the data fell in that region, the point   would be in the 
interval
So the interval            covers the true value with probability 

122
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�

�
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Neyman Construction example



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN Summer School, July 2013

A Point about the Neyman Construction

123

x0

��

�+

x

�

This is not Bayesian... it doesn’t mean the probability 
that the true value of   is in the interval is        !� 1� �

�true
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Generalizing the Likelihood Ratio with Nuisance Parameters

124

Initially, we started with 2 simple hypotheses, and showed the likelihood 
ratio was most powerful (Neyman-Pearson)
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Generalizing the Likelihood Ratio with Nuisance Parameters

124

Initially, we started with 2 simple hypotheses, and showed the likelihood 
ratio was most powerful (Neyman-Pearson)
How do we generalized it to composite hypotheses.

f(x|�0)
f(x|�best(x))

f(x|H0)
f(x|H1)
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ratio was most powerful (Neyman-Pearson)
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An example
Essentially, you need to fit your model to the data twice:
once with everything floating, and once with signal fixed to 0

125

where the ai are the parameters used to parameterize the fake-tau background and ν represents all nui-680

sance parameters of the model: σH ,mZ,σZ,rQCD,a1,a2,a3. When using the alternate parameterization681

of the signal, the exact form of Equation 14 is modified to coincide with parameters of that model.682

Figure 14 shows the fit to the signal candidates for a mH = 120 GeV Higg with (a,c) and without683

(b,d) the signal contribution. It can be seen that the background shapes and normalizations are trying to684

accommodate the excess near mττ = 120 GeV, but the control samples are constraining the variation.685

Table 13 shows the significance calculated from the profile likelihood ratio for the ll-channel, the lh-686

channel, and the combined fit for various Higgs boson masses.687
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Figure 14: Example fits to a data sample with the signal-plus-background (a,c) and background only

(b,d) models for the lh- and ll-channels at mH = 120 GeV with 30 fb−1 of data. Not shown are the

control samples that were fit simultaneously to constrain the background shape. These samples do not

include pileup.
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�(µ = 0) =
P (m,a|µ = 0, ˆ̂⌫(µ = 0;m,a) )

P (m,a|µ̂, ⌫̂)

P (m,a|µ = 0, ˆ̂⌫(µ = 0;m,a) )P (m,a|µ̂, ⌫̂)



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN Summer School, July 2013

Properties of the Profile Likelihood Ratio
After a close look at the profile likelihood ratio

one can see the function is independent of true values of ν
‣ though its distribution might depend indirectly

Wilks’s theorem states that under certain conditions the 
distribution of -2 ln λ (μ=μ0) given that the true value of μ is μ0 
converges to a chi-square distribution 
‣ “asymptotic distribution” is known and it is independent of ν !

● more complicated if parameters have boundaries (eg. µ≥ 0)

Thus, we can calculate the p-value for the background-only 
hypothesis without having to generate Toy Monte Carlo!
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�(µ) =
P (m,a|µ, ˆ̂⌫(µ;m,a) )

P (m,a|µ̂, ⌫̂)
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Toy Monte Carlo

Profile Likelihood Ratio
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Explicitly build distribution by generating “toys” / pseudo experiments assuming a 
specific value of µ and ν.  

‣ randomize both main measurements D={x} and auxiliary measurements G={a}
‣ fit the model twice for the numerator and denominator of profile likelihood ratio
‣ evaluate -2ln λ(µ) and add to histogram

Choice of µ is straight forward: typically µ=0 and µ=1, but choice of θ is less clear
‣ more on this tomorrow

This can be very time consuming.  Plots below use millions of “toy” pseudo-
experiments 
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Likelihood-based Intervals

Wilks’s theorem tells us how the profile 
likelihood ratio evaluated at θ is 
“asymptotically” distributed when θ is true
‣ asymptotically means there is sufficient 

data that the log-likelihood function is 
parabolic

‣ does NOT require the model f(x|θ) to be 
Gaussian

So we don’t really need to go to the 
trouble to build its distribution by using 
Toy Monte Carlo or fancy tricks with 
Fourier Transforms

We can go immediately to the threshold 
value of the profile likelihood ratio
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And typically we only show the likelihood 
curve and don’t even bother with the 
implicit (asymptotic) distribution
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Likelihood-Ratio Interval example

68% C.L. likelihood-ratio interval 

for Poisson process with n=3 

observed:

L (µ) = µ3 exp(-µ)/3!

Maximum at µ = 3.

Bob Cousins, CMS, 2008 35

∆2lnL = 12 for approximate ±1 

Gaussian standard deviation  

yields interval [1.58, 5.08]

Figure from R. Cousins,             

Am. J. Phys. 63 398 (1995)

And typically we only show the likelihood 
curve and don’t even bother with the 
implicit (asymptotic) distribution
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L (µ) = µ3 exp(-µ)/3!

Maximum at µ = 3.
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And typically we only show the likelihood 
curve and don’t even bother with the 
implicit (asymptotic) distribution
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“The Asimov paper”
Recently we showed how to generalize this asymptotic approach
‣ generalize Wilks’s theorem when boundaries are present
‣ use result of Wald to get f(-2logλ(µ) | µ’)

130

Eur.Phys.J.C71:1554,2011

Asymptotic formulae for likelihood-based tests of new physics
Glen Cowan, Kyle Cranmer, Eilam Gross, Ofer Vitells

http://arxiv.org/abs/1007.1727v2
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f(q
’]µ|
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med[q

’)µ|
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f(q
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Figure 2: Illustration of the the p-
value corresponding to the median
of qµ assuming a strength parame-
ter µ′ (see text).

procedure can be extended to the case where several search channels are combined, and in
Sec. 4.3 we describe how to give statistical error bands for the sensitivity.

4.1 The median significance from Asimov values of the test statistic

By using the Asimov data set one can easily obtain the median values of q0, qµ and q̃µ, and
these lead to simple expressions for the corresponding median significance. From Eqs. (53),
(60) and (68) one sees that the significance Z is a monotonic function of q, and therefore
the median Z is simply given by the corresponding function of the median of q, which is
approximated by its Asimov value. For discovery using q0 one wants the median discov-
ery significance assuming a strength parameter µ

′ and for upper limits one is particularly
interested in the median exclusion significance assuming µ

′ = 0, med[Zµ|0]. For these one
obtains

med[Z0|µ′] =
√

q0,A , (79)

med[Zµ|0] =
√

qµ,A . (80)

When using q̃µ for establishing upper limits, the general expression for the exclusion
significance Zµ is somewhat more complicated depending on µ

′, but is in any case found by
substituting the appropriate values of q̃µ,A and σA into Eq. (68). For the usual case where one
wants the median significance for µ assuming data distributed according to the background-
only hypothesis (µ′ = 0), Eq. (68) reduces in fact to a relation of the same form as Eq. (60),
and therefore one finds

med[Zµ|0] =
√

q̃µ,A . (81)

4.2 Combining multiple channels

In many analyses, there can be several search channels which need to be combined. For
each channel i there is a likelihood function Li(µ,θi), where θi represents the set of nuisance
parameters for the ith channel, some of which may be common between channels. Here
the strength parameter µ is assumed to be the same for all channels. If the channels are
statistically independent, as can usually be arranged, the full likelihood function is given by
the product over all of the channels,

20
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The sensitivity problem
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s95+b

The physicist’s worry about limits in general is that if there is a strong 
downward fluctuation, one might exclude arbitrarily small values of s
‣ with a procedure that produces proper frequentist 95% confidence 

intervals, one should expect to exclude the true value of s 5% of the time, 
no matter how small s is!

‣ This is not a problem with the procedure, but an undesirable consequence of the Type I / Type 
II error-rate setup
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"CLs+b"

"CLb"

CLs

To address the sensitivity problem, CLs was introduced
‣ common (misused) nomenclature: CLs = CLs+b/CLb

‣ idea: only exclude if CLs<5%  (if CLb is small, CLs gets bigger)
CLs is known to be “conservative” (over-cover): expected limit covers with 97.5%

● Note: CLs is NOT a probability
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http://inspirehep.net/record/599622
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!e End
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