

1

Practical Statistics for Particle Physics

Lecture 4

What do these plots mean?

Center for Cosmology and

600

Other examples of Confidence Intervals

Kyle Cranmer (NYU)

CERN Summer School, July 2013

A short proof of Neyman-Pearson

Kyle Cranmer (NYU)

CERN Summer School, July 2013

An optimal way to combine

 Ω

Special case of our general probability model (no nuisance parameters)

$$
= \frac{L(x|H_1)}{L(x|H_0)} = \frac{\prod_{i}^{N_{chan}} Pois(n_i|s_i + b_i) \prod_{j}^{n_i} \frac{s_i f_s(x_{ij}) + b_i f_b(x_{ij})}{s_i + b_i}}{\prod_{i}^{N_{chan}} Pois(n_i|b_i) \prod_{j}^{n_i} f_b(x_{ij})}
$$

$$
\ln Q = -s_{tot} + \sum_{i}^{N_{chan}} \sum_{j}^{n_i} \ln \left(1 + \frac{s_i f_s(x_{ij})}{b_i f_b(x_{ij})}\right)
$$

Instead of simply counting events, the optimal test statistic is equivalent to adding events **weighted** by

ln(1+signal/background ratio)

The test statistic is a map T:data $\rightarrow \mathbb{R}$

 $\overline{15}$ By repeating the experiment many times, you obtain a distribution for T

Instead of choosing to accept/reject H₀ one can compute the p-value

$$
p = \int_{T_o}^{\infty} f(T|H_0)
$$

 $f(T|H_0)$

 \mathcal{L}

 \mathcal{L}

 \mathcal{L}

Instead of choosing to accept/reject H_0 one can compute the p-value

P(*x|H*1) *^P*(*x|H*0) *> k* If the model for the data depends on parameters **α** the p-value also depends on **α.**

When the model has nuisance parameters, only reject the null if *p*(*α*) sufficiently small **for all values** of the nuisance parameters.

Center for Cosmology and Particle Physics

What is a "Confidence Interval?

Center for Cosmology and Particle Physics

What is a "Confidence Interval?

‣ you see them all the time:

Center for Cosmology and Particle Physics

What is a "Confidence Interval?

- ‣ you see them all the time:
- Want to say there is a 68% chance that the true value of (m_W, m_t) is in this interval

Center for COSMOLOGY AND Particle Physics

What is a "Confidence Interval?

‣ you see them all the time:

Want to say there is a 68% chance that the true value of (m_W, m_t) is in this interval

‣ but that's P(theory|data)!

What is a "Confidence Interval?

‣ you see them all the time:

Want to say there is a 68% chance that the true value of (m_W, m_t) is in this interval

‣ but that's P(theory|data)!

Correct frequentist statement is that the interval **covers** the true value 68% of the time

What is a "Confidence Interval?

‣ you see them all the time:

Want to say there is a 68% chance that the true value of (m_W, m_t) is in this interval

- ‣ but that's P(theory|data)!
- Correct frequentist statement is that the interval **covers** the true value 68% of the time
	- ‣ remember, the contour is a function of the data, which is random. So it moves around from experiment to experiment

What is a "Confidence Interval?

‣ you see them all the time:

Want to say there is a 68% chance that the true value of (m_W, m_t) is in this interval

‣ but that's P(theory|data)!

Correct frequentist statement is that the interval **covers** the true value 68% of the time

‣ remember, the contour is a function of the data, which is random. So it moves around from experiment to experiment

What is a "Confidence Interval?

‣ you see them all the time:

Want to say there is a 68% chance that the true value of (m_W, m_t) is in this interval

‣ but that's P(theory|data)!

Correct frequentist statement is that the interval **covers** the true value 68% of the time

‣ remember, the contour is a function of the data, which is random. So it moves around from experiment to experiment

‣ Bayesian "credible interval" does mean probability parameter is in interval. The procedure is very intuitive:

$$
P(\theta \in V) = \int_{V} \pi(\theta | x) = \int_{V} d\theta \frac{f(x | \theta) \pi(\theta)}{\int d\theta f(x | \theta) \pi(\theta)}
$$

There is a precise dictionary that explains how to move from from hypothesis testing to confidence intervals

- ‣ Type I error: probability interval does not cover true value of the parameters (eg. it is now a function of the parameters)
- ‣ Power is probability interval does not cover a false value of the parameters (eg. it is now a function of the parameters)
	- We don't know the true value, consider each point θ_0 as if it were true
- What about null and alternate hypotheses?
	- \blacktriangleright when testing a point θ_0 it is considered the null
	- ‣ all other points considered "alternate"
- So what about the Neyman-Pearson lemma & Likelihood ratio?
	- ‣ as mentioned earlier, there are no guarantees like before
	- ‣ a common generalization that has good power is:

Discovery in pictures

Discovery: test b-only (null: s=0 vs. alt: s>0)

• note, **one-sided** alternative. larger N is "more discrepant"

Center for

How do we generalize?

Kyle Cranmer (NYU)

CERN Summer School, July 2013

Neyman Construction example

For each value of θ consider $f(x|\theta)$

Neyman Construction example

- \bullet we want a test of size α
- \blacktriangleright equivalent to a $100(1-\alpha)\%$ confidence interval on θ
- \bullet so we find an $\mathop{\bf acceptance}\nolimits$ region $\mathop{\bf with}\nolimits 1-\alpha$ probability

- ‣ No unique choice of an acceptance region
- ‣ here's an example of a lower limit

- ‣ No unique choice of an acceptance region
- ‣ and an example of a central limit

- ‣ choice of this region is called an **ordering rule**
- ‣ In Feldman-Cousins approach, ordering rule is the likelihood ratio. Find contour of L.R. that gives size α

Now make acceptance region for every value of θ

This makes a **confidence belt** for *θ*

This makes a **confidence belt** for *θ*

the regions of **data** in the confidence belt can be considered as **consistent** with that value of *θ*

Now we make a measurement *x*0

the points θ where the belt intersects x_0 a part of the **confidence interval** in θ for this measurement

Neyman Construction example

For every point θ , if it were true, the data would fall in its acceptance region with probability $1-\alpha$

If the data fell in that region, the point θ would be in the $\textsf{interval}\left[\theta_-, \theta_+\right]$

So the interval $[\theta_-,\theta_+]$ covers the true value with probability $1-\alpha$

A Point about the Neyman Construction

This is not Bayesian... it doesn't mean the probability that the true value of θ is in the interval is $1 - \alpha$!

Initially, we started with 2 simple hypotheses, and showed the likelihood ratio was most powerful (Neyman-Pearson)

Initially, we started with 2 simple hypotheses, and showed the likelihood ratio was most powerful (Neyman-Pearson)

How do we generalized it to composite hypotheses.

Initially, we started with 2 simple hypotheses, and showed the likelihood ratio was most powerful (Neyman-Pearson)

How do we generalized it to composite hypotheses.

How do we generalize it to include nuisance parameters?

Initially, we started with 2 simple hypotheses, and showed the likelihood ratio was most powerful (Neyman-Pearson)

How do we generalized it to composite hypotheses.

How do we generalize it to include nuisance parameters?

Initially, we started with 2 simple hypotheses, and showed the likelihood ratio was most powerful (Neyman-Pearson)

How do we generalized it to composite hypotheses.

How do we generalize it to include nuisance parameters?

From Kendal From Kendall

Initially, we started with 2 simple hypotheses, and showed the likelihood ratio was most powerful (Neyman-Pearson)

How do we generalized it to composite hypotheses.

How do we generalize it to include nuisance parameters?

Generalizing the Likelihood Ratio with Nuisance Parameters

Variable Meaning θ_r physics parameters θ_s nuisance parameters
 $\hat{\theta}_r, \hat{\theta}_s$ unconditionally maximize $L(x|\hat{\theta}_r, \hat{\theta}_s)$
 $\hat{\hat{\theta}}_s$ conditionally maximize $L(x|\theta_{r0}, \hat{\theta}_s)$ conditionally maximize $L(x|\theta_{r0}, \hat{\hat{\theta}}_s)$ $\boxed{(H_0: \theta_r = \theta_{r0})}$ Now consider the Likelihood Ratio $(H_1: \theta_r \neq \theta_{r0})$ $l = \frac{L(x|\theta_{r0}, \hat{\theta}_s)}{L(r|\hat{\theta}_s|\hat{\theta}_s)} = \lambda(\theta_{r0})$ Intuitively l is a reasonable test statistic for H_0 : it is the maximum likelihood under H_0 as a fraction of its largest possible value, and large values of l signify that H_0 is reasonably acceptable.

Kyle Cranmer (NYU)

Essentially, you need to fit your model to the data twice: once with everything floating, and once with signal fixed to 0 **682 sance parameters of the model:** *PARTICLE PHYSICS* $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and one with signal fixed to $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $\overline{\mathcal{L}}$ (b) the signal contribution. It can be seen that the background shapes are trying to the shape shapes are trying to the shapes are trying to the set of $\overline{\mathcal{L}}$

$$
\lambda(\mu=0) = \frac{P(\mathbf{m}, \mathbf{a} | \mu=0, \hat{\dot{\nu}}(\mu=0; \mathbf{m}, \mathbf{a}))}{P(\mathbf{m}, \mathbf{a} | \hat{\mu}, \hat{\nu})}
$$

Properties of the Profile Likelihood Ratio

After a close look at the profile likelihood ratio

$$
\lambda(\mu) = \frac{P(\mathbf{m}, \mathbf{a} | \mu, \hat{\hat{\nu}}(\mu; \mathbf{m}, \mathbf{a}))}{P(\mathbf{m}, \mathbf{a} | \hat{\mu}, \hat{\nu})}
$$

one can see the function is independent of true values of *ν*

- ‣ though its distribution might depend indirectly
- Wilks's theorem states that under certain conditions the distribution of $-2 \ln \lambda$ ($\mu = \mu_0$) given that the true value of μ is μ_0 converges to a chi-square distribution
	- ‣ "asymptotic distribution" is known and it is independent of *ν* !
		- \cdot more complicated if parameters have boundaries (eg. $\mu \geq 0$)

Thus, we can calculate the p-value for the background-only hypothesis without having to generate Toy Monte Carlo!

Toy Monte Carlo

Explicitly build distribution by generating "toys" / pseudo experiments assuming a specific value of *µ* and *ν*.

- randomize both main measurements $\mathcal{D}=\{x\}$ and auxiliary measurements $\mathcal{G}=\{\mathbf{a}\}$
- ‣ fit the model twice for the numerator and denominator of profile likelihood ratio
- ‣ evaluate *-*2ln *λ(µ)* and add to histogram

Choice of μ is straight forward: typically $\mu=0$ and $\mu=1$, but choice of θ is less clear

‣ more on this tomorrow

signalplusbackground This can be very time consuming. Plots below use millions of "toy" pseudoexperiments

Kyle Cranmer (NYU)

CERN Summer School, July 2013 127

Wilks's theorem tells us how the profile likelihood ratio evaluated at θ is "asymptotically" distributed **when θ is true**

- ‣ asymptotically means there is sufficient data that the log-likelihood function is parabolic
- ‣ does NOT require the model **f(x|θ)** to be **Gaussian**

So we don't really need to go to the trouble to build its distribution by using Toy Monte Carlo or fancy tricks with Fourier Transforms

We can go immediately to the threshold value of the profile likelihood ratio

 $-2\log \lambda(\theta) \sim \chi_n^2$

And typically we only show the likelihood curve and don't even bother with the implicit (asymptotic) distribution

Center for Cosmology and Particle Physics

7 6 (d) $\overline{5}$ \sim \sim ⇥ $\overline{4}$ $\lambda(\theta)$ $\overline{3}$ $-2\log$ $\overline{2}$ θ \overline{O} $\overline{3}$ $\overline{6}$ 9 12 15 Ω μ_{t}

Figure from R. Cousins, Am. J. Phys. 63 398 (1995) And typically we only show the likelihood curve and don't even bother with the implicit (asymptotic) distribution

Center for COSMOLOGY AND Particle Physics

Figure from R. Cousins, Am. J. Phys. 63 398 (1995) And typically we only show the likelihood curve and don't even bother with the implicit (asymptotic) distribution

"The Asimov paper"

Recently we showed how to generalize this asymptotic approach

- ‣ generalize Wilks's theorem when boundaries are present
- \cdot use result of Wald to get f(-2log $\lambda(\mu) | \mu'$)

Asymptotic formulae for likelihood-based tests of new physics

Glen Cowan, Kyle Cranmer, Eilam Gross, Ofer Vitells

Eur.Phys.J.C71:1554,2011

http://arxiv.org/abs/1007.1727v2

Kyle Cranmer (NYU)

ter µ! (see text).

Figure 2: Illustration of the the p-

value corresponding to the median

of q^µ assuming a strength parame-

The sensitivity problem

The physicist's worry about limits in general is that if there is a strong downward fluctuation, one might exclude arbitrarily small values of s

- ‣ with a procedure that produces proper frequentist 95% confidence intervals, one should expect to exclude the true value of s 5% of the time, no matter how small s is!
	- ‣ This is not a problem with the procedure, but an undesirable consequence of the Type I / Type II error-rate setup

N events

http://inspirehep.net/record/599622

To address the sensitivity problem, CLs was introduced

 \cdot common (misused) nomenclature: $CL_s = CL_{s+b}/CL_b$

 \cdot idea: only exclude if $CL_s < 5\%$ (if CL_b is small, CL_s gets bigger)

CLs is known to be "conservative" (over-cover): expected limit covers with 97.5%

• Note: CL_s is NOT a probability

 $\sqrt{1}$ hank You!