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What do these plots mean?
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Other examples of Confidence Intervals ) ‘T”
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A short proof of Neyman-Pearson ) ?’

K\Ho /\HO)

P(x|H,) P(x|H,)
Pzl Ho) < kg, P(a|Hy) > kg
P(\_|H1) < P(\_|Ho)k, P(_/|Hy) > P(_/|Ho)k,

P(\_|H1) < P(_/|H1)

The new region region has less power.
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An optimal way to combine ) (‘Tf’

Special case of our Nenan P ois(n.|s ni sifs(wi)+bifo(wi))
il i ilsi + b
general probability model @ = LlHy) _ 11 (i )1 si+bs

L(z|Hy) Nenan Pois(m:|b:) TT y
(no nuisance parameters) (x| Ho) [1; ois(nilb;) [ [;* fo(2i;)
Ncehan  my Zfs( )
Q= s Db (1 n )
bifu(xi;)
a1, | (@ LEP _ _
’2""2  Observed  my= 115 Gevie Instead of simply counting
S o1l Pt events, the optimal test statistic is
2 e equivalent to adding events
%0.08 a weighted by
E ‘
E 0.06 -
=9 In(1+signal/background ratio)
0.04 -
0.02 The test statistic is a map T.data —» R

T R T By repeating the experiment many
T= -21In(Q) times, you obtain a distribution for T
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p-values > @Tg
Instead of choosing to accept/reject Ho oS
=

one can compute the p-value

f(T1H,)
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p-values > ((Tﬁ
Instead of choosing to accept/reject Ho oS
=

one can compute the p-value

f(T1H,)
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OOOOOOOOOOOO

p-values P comeeeram

Instead of choosing to accept/reject Ho
one can compute the p-value / / T‘HO

If the model for the data

f (T | OL) depends on parameters «
the p-value also depends

on .

obs

TOO F(T|)dT = / £(D]a) O(T(D) — Ty) dD = P(T > Tpla)
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p-values > «Tﬁ
When the model has nuisance parameters, only reject the null if
p(a) sufficiently small for all values of the nuisance parameters.

If the model for the data

f (T | OL) depends on parameters «
the p-value also depends

on .

obs

TOO F(T|)dT = / £(D]a) O(T(D) — Ty) dD = P(T > Tpla)
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Confidence Interval ) e e ]

[

1 —LEP1 and SLD
80.5 - LEP2 and Tevatron (prel.)

68% CL

150 175 200
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Confidence Interval ) e e ]

[

What is a “Confidence Interval? | —LEP1 and SLD
80.5 - LEP2 and Tevatron (prel.)

68% CL

150 175 200
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Confidence Interval ) e e ]

[

What is a “Confidence Interval? | —LEP1 and SLD
80.5 - LEP2 and Tevatron (prel.)

68% CL

- you see them all the time:
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Confidence Interval ) e e ]

[

What is a “Confidence Interval? | —LEP1 and SLD
80.5 - LEP2 and Tevatron (prel.)

68% CL

- you see them all the time:

>
Want to say there is a 68% chance & 4, ,]
that the true value of (mw, mt) is in R

this interval

150 175 200

107

CERN Summer School, July 2013

Kyle Cranmer (NYU)



Confidence Interval ) e e ]

[

What is a “Confidence Interval? | —LEP1 and SLD
80.5 - LEP2 and Tevatron (prel.)

68% CL

- you see them all the time:

>
Want to say there is a 68% chance & 4, ,]
that the true value of (mw, mt) is in N

this interval

- but that's P(theory|data)!
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Confidence Interval ) e e ]

[

1 —LEP1 and SLD
80.5 - LEP2 and Tevatron (prel.)

68% CL

What is a “Confidence Interval?

> you see them all the time:

>
Want to say there is a 68% chance & 4, ,]
that the true value of (mw, mt) is in N

this interval

- but that's P(theory|data)!

Correct frequentist statement is that 150 175 200

the interval covers the true value
68% of the time
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Confidence Interval ) e e ]

[

1 —LEP1 and SLD
80.5 - LEP2 and Tevatron (prel.)

68% CL

What is a “Confidence Interval?

> you see them all the time:

>
Want to say there is a 68% chance & 4, ,]
that the true value of (mw, mt) is in N

this interval

- but that's P(theory|data)!

Correct frequentist statement is that 150 175 200

the interval covers the true value
68% of the time

- remember, the contour is a function of
the data, which is random. So it moves

around from experiment to experiment
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Confidence Interval ) GT”

[

What is a “Confidence Interval? ] —LEP1 and SLD
80.5 - LEP2 and Tevatron (prel.)
> you see them all the time: 1 68%CL

that the true value of (mw, mt) is in

this interval < _
- but that's P(theory|data)!

>

Want to say there is a 68% chance & 4, ,]
=
=

Correct frequentist statement is that 150 175 200

the interval covers the true value m, [GeV]
68% of the time

- remember, the contour is a function of
the data, which is random. So it moves
around from experiment to experiment
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PARTICLE PHYSICS

Confidence Interval ) e Y

[

What is a “Confidence Interval? | —LEP1 and SLD
80.5 - LEP2 and Tevatron (prel.)

> you see them all the time: 1 68%CL

Want to say there is a 68% chance
that the true value of (mw, mt) is in

this interval < _
- but that's P(theory|data)!

Correct frequentist statement is that 150 175 200

the interval covers the true value m, [GeV]

5 .
68% of the time -Bayesian “credible interval” does

mean probability parameter is
in interval. The procedure is
very intuitive:

) ) /(@) (0)
POeV)= /‘/W(e\x) ) defdgf(x|9)7r(9)

- remember, the contour is a function of
the data, which is random. So it moves
around from experiment to experiment
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. . cenre For W
Inverting Hypothesis Tests ) e A |
There is a precise dictionary that explains how to move from from
hypothesis testing to confidence intervals

» Type | error: probability interval does not cover true value of the
parameters (eq. it is now a function of the parameters)

» Power is probability interval does not cover a false value of the
parameters (eq. it is now a function of the parameters)

- We don’t know the true value, consider each point 90 as if it were true

What about null and alternate hypotheses?
» when testing a point 0y it is considered the null
» all other points considered “alternate”
So what about the Neyman-Pearson lemma & Likelihood ratio?
- as mentioned earlier, there are no guarantees like before
>~ @ common generalization that has good power is:
f(x|Hy)
f(x|Hy)
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Discovery in pictures ) (‘T’
Discovery: test b-only (null: s=0 vs. alt: s>0)
- note, one-sided alternative. larger N is “more discrepant”

obs b-only p-value

b-only stb

—_ P ! aka “CLDb”

Neo) / N\,

p I
7)) / I
Z / I
— / ]
o K4 I
/ I
/ I
/ !
/ I
/ I
/’ !
/s ~— |
-7 ~~‘~

Nevents —— more discrepant ——»
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Upper limits in pictures ) @Tﬁ
What is meant by “95% upper limit” ?

M

c ATLA% YPreIiminary v
2 - Observed CLs
. _.‘_3 ---- Expected ILdt =1.0-1.2fb"
See the picture below? E0F w0 % a7 TaV
- ' +20C
» ie. increase s, until the probability to have j
data "more discrepant” is < 5% -
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~~ - I “““""""' “““"".""u
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/,,/ ‘;s‘;~5~
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How do we generalize? ) ‘T”
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Neyman Construction example ) (‘Tf’
For each value of gconsider f(x|0)

f(x|0)
A

y
s )
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Neyman Construction example ) (‘T’

Let’s focus on a particular point f(z|6,)
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Neyman Construction example ) (‘T’

Let’s focus on a particular point f(z|0,)
» we want a test of size o
» equivalent to a 100(1 — )% confidence interval ong
» so we find an acceptance region with1l — o probability

A

f(x|6o)
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Neyman Construction example ) (‘T’

Let’s focus on a particular point f(z|6,)
» No unique choice of an acceptance region
» here’s an example of a lower limit
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Neyman Construction example ) (‘T’

Let’s focus on a particular point f(z|6,)
» No unique choice of an acceptance region
»and an example of a central limit

v’oz/2”
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Neyman Construction example ) @f’

Let’s focus on a particular point f(z|6,)
» choice of this region is called an ordering rule

» In Feldman-Cousins approach, ordering rule is the
likelihood ratio. Find contour of L.R. that gives size o

A A

f(x|6o)
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Neyman Construction example ) “T”

Now make acceptance region for every value of ¢

f(x|0)
A
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Neyman Construction example ) (‘T’

This makes a confidence belt for 6

f(x|0)
A
v
0o /FJ >

0, [ < .
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Neyman Construction example ) (‘T’
This makes a confidence belt for 6

the regions of data in the confidence belt can be
considered as consistent with that value of 6
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Neyman Construction example ) (‘T’
Now we make a measurement o

the points ¢ where the belt intersects zo a part of the
confidence interval in 4 for this measurement

€g. [9—7 H-I-]
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: cenren ror ),
Neyman Construction example ) commeroer e Y
For every point @, if it were true, the data would fall in its
acceptance region with probability 1 — «
If the data fell in that region, the pointgd would be in the
interval [§_, 6. ]
So the interval[f_, 61| covers the true value with probability 1 — «

122
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A Point about the Neyman Construction ) (‘Tﬁ

This is not Bayesian... it doesn’t mean the probability
that the true value ofg is in the interval is1 — a!

Ay A
2ra
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Generalizing the Likelihood Ratio with Nuisance Parameters ) CosmoLoy AND ==

PARTICLE PHYSICS

Initially, we started with 2 simple hypotheses, and showed the likelihood
ratio was most powerful (Neyman-Pearson)
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CENTER FOR

Generalizing the Likelihood Ratio with Nuisance Parameters ) CosmoLoy AND ==

PARTICLE PHYSICS

Initially, we started with 2 simple hypotheses, and showed the likelihood
ratio was most powerful (Neyman-Pearson)

How do we generalized it to composite hypotheses.

f(z|Ho) ~ S(x]0o)
f(x|Hy) f(x|Opest(z))
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CENTER FOR

Generalizing the Likelihood Ratio with Nuisance Parameters ) CosmoLoy AND ==

PARTICLE PHYSICS

Initially, we started with 2 simple hypotheses, and showed the likelihood
ratio was most powerful (Neyman-Pearson)

How do we generalized it to composite hypotheses.
How do we generalize it to include nuisance parameters?
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CENTER FOR

Generalizing the Likelihood Ratio with Nuisance Parameters ) CosmoLocY AND s

PARTICLE PHYSICS

Initially, we started with 2 simple hypotheses, and showed the likelihood
ratio was most powerful (Neyman-Pearson)

How do we generalized it to composite hypotheses.
How do we generalize it to include nuisance parameters?

Variable Meaning

0, physics parameters

0, nuisance parameters

0,0, unconditionally maximize L(z|6,,6;)
0, conditionally maximize L(x|60,, és)

llepuay| wo.4
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CENTER FOR

Generalizing the Likelihood Ratio with Nuisance Parameters ) CosmoLocY AND s

PARTICLE PHYSICS

Initially, we started with 2 simple hypotheses, and showed the likelihood
ratio was most powerful (Neyman-Pearson)

How do we generalized it to composite hypotheses.
How do we generalize it to include nuisance parameters?

Variable Meaning

0, physics parameters

0, nuisance parameters

6,0, unconditionally maximize L(z|6,,6;) -

9, conditionally maximize L(z|6,¢, 6;) g
(Ho : 6, = 0,9) ®
(Hl 97“ 7£ ‘97"0) 8‘

Kyle Cranmer (NYU CERN Summer School, July 2013 124
y




CENTER FOR

Generalizing the Likelihood Ratio with Nuisance Parameters ) CosmoLocY AND s

PARTICLE PHYSICS

Initially, we started with 2 simple hypotheses, and showed the likelihood
ratio was most powerful (Neyman-Pearson)

How do we generalized it to composite hypotheses.
How do we generalize it to include nuisance parameters?

Variable Meaning

r physics parameters
s nuisance parameters

0
0
0,0, unconditionally maximize L(z|6,,6;)
0

o conditionally maximize L(x|60,, és)

(Hy: 0, = 6,) Now consider the Likelihood Ratio
0, + 0

0 L(x|0, ,58
T ) l: ($| AO . ) _ >\(9,r.0)
L(x|0,,05)

Intuitively [ is a reasonable test statistic for Hy: it is the maximum likelihood

llepuay| wo.4

under Hy as a fraction of its largest possible value, and large values of [ signify

that Hj is reasonably acceptable.
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An example I

Essentially, you need to fit your model to the data twice:

once with everything floating, and once with signal fixed to 0
P(maa|:u — Oaﬁ(:u — O;maa))

Alp=0) =
P(m,a|f, )

P(m,alj, ) P(m, aly = 0,0(u = 0;m,a))

P T T T | T T T | T T T | T T T | T T T T T T P T T T | T T T | T T T | T T T | T T T | T T T |
> L ] > - a
B4t ATLAS 1 31 ATLAS :
Wiok VBF H(120)—tt—Ih - Lok VBF H(120)—tt—lh
P \Us=14TeV, 301fb"- P \s=14TeV, 301fb"-
=10 . =10 o
(0] i ] () i _
S T ] > [ ]
10 7] gl 7]
6 . 6f ]
4 = 4t =
2 1 2 !t

O o BOPer | W W W | |...|.::|"'.+:' :1'-' L1 L) O [ I | I .....I .... ¥ l T L |
60 80 100 120 140 160 180 60 80 100 120 140 160 180

M.. (GeV) M., (GeV)




Properties of the Profile Likelihood Ratio J 5. %
After a close look at the profile likelihood ratio

Mu) =
= Plm,ali,0)
one can see the function is independent of true values of v
» though its distribution might depend indirectly

Wilks’s theorem states that under certain conditions the

distribution of -2 In A (u=uo) given that the true value of u is uo
converges to a chi-square distribution

» “asymptotic distribution” is known and it is independent of v !
- more complicated if parameters have boundaries (eg. = 0)

Thus, we can calculate the p-value for the background-only
hypothesis without having to generate Toy Monte Carlo!

A

P(m,a|u, v(y; m, a))
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Toy Monte Carlo I

Explicitly build distribution by generating “toys” / pseudo experiments assuming a
specific value of x and v.

» randomize both main measurements @={x} and auxiliary measurements ¢={a}

» fit the model twice for the numerator and denominator of profile likelihood ratio
» evaluate -2In A(x) and add to histogram

Choice of x is straight forward: typically =0 and x=1, but choice of 8 is less clear
» more on this tomorrow

This can be very time consuming. Plots below use millions of “toy” pseudo-

experiments _
signalplusbackground signalplusbackground
10 E background ? background
E — test statistic data E — test statistic data
1 2-channel 5-channel
107
107 4.4
E 3-350 10-2 \\S . 0
102 = \\§\§
E 10-3 \Si\\\ S
10° NN
H 4 NN
10t
10+ AN
-5
10° N NN
100
NN
10'6 \\§§§§§q\\§§§ 2?%;F v v v by by by 1y 10_7 §§§§$\:§q§§$t N Lovvav bvv v bv v by by |-|LI_|_
0 5 1 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 45
Profile Likelihood Ratio Profile Likelihood Ratio
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Likelihood-based Intervals ) CosmoLaaY AND (‘T’

PPPPPPPPPPPPPPP

Wilks’s theorem tells us how the profile —2log A(0) ~ x?
likelihood ratio evaluated at 8 is "

“asymptotically” distributed when 0 is true

» asymptotically means there is sufficient
data that the log-likelihood function is
parabolic

» does NOT require the model f(x|0) to be
Gaussian

f(—2log A(0)|0)

So we don't really need to go to the
trouble to build its distribution by using
Toy Monte Carlo or fancy tricks with
Fourier Transforms

We can go immediately to the threshold
value of the profile likelihood ratio
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Likelihood-based Intervals ) coeren, @Y

f(=2log A(0)[0)

Kyle Cranmer (NYU) CERN Summer School, July 2013 129
y




Likelihood-based Intervals ) e, @0

a\
>
.
VN
)
N—"
~
a0
o
pr—{
N S
| ~<
Q0
2
R

(l(p)x Sorg—)f

And typically we only show the likelihood
curve and don’t even bother with the

implicit (asymptotic) distribution
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Likelihood-based Intervals ) e, @0

[ | | | | ]
6 - @ 1
5~ -

B =2 1In L(ne=3 1 ) ]
0 E B
R . s
2 b — B
e —
0 - A EE N R NN N N N N N R N -

0 3 6 9 12 15

f
Figure from R. Cousins, And typically we only show the likelihood

Am. J. Phys. 63 398 (1995) curve and don't even bother with the
implicit (asymptotic) distribution
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Likelihood-based Intervals ) «Tﬁ

7 : | | | | : 6 July 2011 — mLir.nit =:161 GeV
6 (d) 5__ . Aagy = |
— = — 0.02750+0.00033
5 _ 1 31+ 0.02749=0.00010
B i 4 - “3-+ incl. low Q° data —
B =2 1In L(ne=3 1 ) ] _ o
0 E 1o,
- 1 3 ]
3 e ]
i ] 2 - n
= _]
B ] 1- 3 —
[y - 0 | Excluded \ s A
0 I SR AT A AT NN NN N N N R R 30 100 300
0 3 6 " 9 12 15 m, [GeV]
Figure from R. Cousins, And typically we only show the likelihood

Am. J. Phys. 63 398 (1995) curve and don't even bother with the
implicit (asymptotic) distribution
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“The Asimov paper” > e |
Recently we showed how to generalize this asymptotic approach

» generalize Wilks’s theorem when boundaries are present

» use result of Wald to get f(-2logh(p) | u’)

Asymptotic formulae for likelihood-based tests of new physics

Glen Cowan, Kyle Cranmer, Eilam Gross, Ofer Vitells
Eur.Phys.).C71:1554,2011

http://arxiv.org/abs/1007.1727v2
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The sensitivity problem ) (‘Tﬁ
The physicist’'s worry about limits in general is that if there is a strong
downward fluctuation, one might exclude arbitrarily small values of s

» with a procedure that produces proper frequentist 95% confidence
intervals, one should expect to exclude the true value of s 5% of the time,
no matter how small s is!

» This is not a problem with the procedure, but an undesirable consequence of the Type | / Type
|l error-rate setup

P(N | s+b)

e

~-
_——
I ———

N events
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CLs > (479
To address the sensitivity problem, CLs was introduced http://inspirehep.net/record/599622
» common (misused) nomenclature: CLs = CLs+/CLyp
» idea: only exclude if CLs<5% (if CLp is small, CLs gets bigger)
CLs is known to be “conservative” (over-cover): expected limit covers with 97.5%
» Note: CLs is NOT a probability

IICLbII

P(N | s+b)

*

[T
—
I iy

N events

Kyle Cranmer (NYU) CERN Summer School, July 2013 132




CENTER FOR m

COSMOLOGY AND L
PARTICLE PHYSICS

(The Exd

(Thank V!
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