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Detecting particles 

Every effect of particles or 

radiation can be used as a 

working principle for a 

particle detector. 

Claus Grupen 
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Example of particle interactions 
Ionization Pair production Compton scattering 

3 D. Bortoletto Lecture 2 

Delta-electrons 



EM interaction of particles with matter  

Interaction with the 

atomic electrons. 

Incoming particles 

lose energy and 

the atoms are 

excited or  ionized.  

Interaction with the 

atomic nucleus. 

Particles are 

deflected  and a 

Bremsstrahlung 

photon can be 

emitted. 

If the particle’s velocity is > the 

velocity of light in the medium  

Cherenkov Radiation. 

When a particle crosses the 

boundary between two media, 

there is a probability ≈1% to 

produce an X ray 

photonTransition radiation.  

M, q=z|e-| 
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 Ze- 



Energy Loss by Ionization  
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Assume: Mc2 ≫ mec
2 (calculation for 

electrons and muons are more complex) 

Interaction is dominated by elastic 

collisions with electrons  

– The trajectory of the charged particle 

is unchanged after scattering 

Energy is transferred to the δ-electrons 

 

 

 

Classical derivation in backup slides  

agrees with QM within a factor of 2 

Energy loss (- sign) 



Energy loss by ionization 
The Bethe-Bloch equation for energy loss 
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re =
1

4pe0

e2
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The Bethe-

Bloch Formula 
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PDG 

Common features: 

– fast growth, as 1/β2, at low 

energy 

– wide minimum in the range 

3 ≤ βγ ≤ 4, 

– slow increase at high βγ.  

 
A particle with dE/dx near 

the minimum is a minimum-

ionizing particle or mip. 

The mip’s ionization losses 

for all materials except 

hydrogen are in the range 1-

2 MeV/(g/cm2)  

– increasing from large to low 

Z of the absorber. 



Understanding Bethe-Bloch 

Dp ^= F̂ò dt = F̂ò
dt

dx
dx = F̂ò

dx

v

     Large γ    

Fast particle 

Relativistic rise as >4 

– Transversal electric field increases 

due to Lorentz boost 
Shell corrections 

– if particle v ≈ orbital velocity of 

electrons, i.e. βc ~ ve. Assumption 

that electron is at rest breaks down 

capture process is possible . 

Density effects due to medium 

polarization  (shielding) increases at 

high   
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dE/dx falls like 1/β2                                        

[exact dependence β-5/3] 

– Classical physics: slower particles 

“feel“ the electric force from the atomic 

electron more 



Understanding Bethe-Bloch 

Kaon 

Pion 

Pion 

Pion 
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Discovery of muon and pion 

Cosmic rays: dE/dx≈z2 

Large energy loss 

 Slow particle 

Small energy loss 

 Fast particle 

Small energy loss 

 Fast Particle 
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Bethe-Bloch: Order of magnitude 

This number must be multiplied with 

ρ [g/cm3] of the Material               

dE/dx [MeV/cm] 
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PDG 

For Z  0.5 A 

– 1/ dE/dx  1.4 MeV cm 2/g 
for   3 

 
Can a 1 GeV muon traverse 1 
m of iron ? 

– Iron: Thickness = 100 cm;    
  = 7.87 g/cm3 

– dE ≈ 1.4 MeV cm 2/g  × 100 
cm ×7.87g/cm3= 1102 MeV 

dE/dx must be taken in 
consideration when you are 
designing an experiment 

 

 

 



Bethe-Bloch dependence on Z/A 

Minimum ionization ≈ 1 - 2 MeV/g cm-2.  For H2: 4 MeV/g cm-2 

Linear decrease as a function of Z of the absorber 
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Stopping power at minimum 

ionization. The line is a fit for Z > 6.  

PDG 



dE/dx Fluctuations 
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DE = dEn
n=1

N

å
N= number of collisions 

E=energy loss in a single collision 

The statistical nature of the ionizing process results in a large fluctuations 

of the energy loss (Δ) in absorber which are thin compared with the 

particle range. 

Ionization loss  is 

distributed statistically 

Small probability to 

have very high energy 

delta-rays 

 



Landau Distribution 
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For thin (but not too thin) absorbers the Landau distribution offers a good 

approximation (standard Gaussian + tail due to high energy delta-rays) 

 
Landau distribution 
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dE/dx and particle ID 
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PT GeV / c[ ] = 0.3B[T ]r[m]

By measuring P and the energy 
loss independently  Particle ID 
in certain momentum regions 

 

Energy loss is a function of 

momentum P=Mcβγ  and it is 

independent of M.  



Energy loss at small momenta 
If the energy of the particle falls below =3 the energy loss rises as 

1/2  Particles deposit most of their energy at the end of their 

track Bragg peak 

Great important for radiation therapy 
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Range of particles in matter 

R(E0 ) =
1

dE / dxE0

0

ò dE

R(b0g0 ) =
Mc2

r

1

Z1

2

A

Z
f b0g0( )

rR(b0g0 ) =

Mc2

1

Z1

2

A

Z
f b0g0( )

• R/M  is ≈ independent of the material 

• R is a useful concept only for low-

energy hadrons (R <λI =the nuclear 

interaction length) 

 

Particle of mass M and kinetic Energy 

E0 enters matter and looses energy 

until it comes to rest at distance R.  
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PDG 

1GeV p in Pb           (Pb)= 11.34 g/cm3    

R/M(Pb)=200 g cm-2 GeV-1 

R=200/11.34/1cm≈ 20 cm  
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• Luis Alvarez used 

the attenuation of 

muons to look for 

chambers in the 

Second Giza 

Pyramid  Muon 

Tomography 

• He proved that there 

are no chambers 

present. 
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Bremsstrahlung 

 A charged particle of mass M and charge q=ze is deflected by a nucleus of 

charge Ze which is partially ‘shielded’ by the electrons. During this 

deflection the charge is ‘accelerated’ and therefore it can radiate a photon 

 Bremsstrahlung.  

This effect depends on  1/ 2nd power of the particle mass, so it is 

relevant for electrons and very high energy muons 
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 Ze-    electrons 

 M, q=ze 



Energy loss for electrons and muons 
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For electrons 

 

-
dE

dx brem

µ
E

m2

E = E0e
-x/X0

After passing a layer of material of 

thickness X0 the electron has 1/e of its 

initial energy. 

Bremsstrahlung, photon emission by an electron 

accelerated in Coulomb field of nucleus, is the 

dominant process for Ee > 10-30 MeV 

 

 

 

– energy loss proportional to 1/m2 

– Important mainly for electrons and h.e. muons 

dE

dx
= 4aNA

Z 2

A
re

2E ln
183

Z1/3

X0 = radiation length in [g/cm2] 

If X0 »
A

4aNAZ
2re

2 ln
183

Z1/3

dE

dx
=
E

X0



Bremsstrahlung  critical energy 
Critical energy 

dE

dx
(Ec )

brems

=
dE

dx
(Ec )

ion

For solid and liquids 

For gasses 
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Example Copper: 

Ec ≈ 610/30 MeV ≈ 20 MeV 

PDG 

Ec =
610 MeV

Z +1.24

Ec =
710 MeV

Z + 0.92



Electron energy loss Møller scattering 

Bhabha scattering 

Positron  annihilation 

Fractional energy loss per radiation 

length in lead as a function of the 

electron or positron energy 
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PDG 



Energy loss summary 
For the muon, the second lightest particle after the electron, the critical 

energy is at 400GeV. 
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PDG 



Multiple scattering 
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A particle passing through 

material undergoes multiple small-

angle scattering due to large-

impact-parameter interactions with 

nuclei 

The scattering angle as a                                          

function of thickness is 

 

 

 

 

Where: 

– p (in MeV/c) is the momentum, 

– βc the velocity, 

– z the charge of the scattered particle 

–  x/X0 is the thickness of the medium in                              

units  of radiation length (X0). 

 



Interaction of photons with matter 
A photon can disappear or its energy can change  dramatically at every 

interaction 

Photoelectric Effect Compton Scattering Pair production 

I(x) = I0e
-mx m =

NA

A
s i

i=1

3

å

l =
1

m

μ=total attenuation 

coefficient 

σi=cross section for each 

process 
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Photoelectric effect 

s ph =apaBZ
5 I0 /Eg( )

7/2

I0=13.6 eV and aB=0.5 3A  

s ph = 2pre
2a4Z 5 mc( )

2
/ Eg

25 

σph(Fe) = 29 barn 

σph(Pb)= 5000 barn 

Absorption of a photon by an electron 

bound to the atom and transfer of the 

photon energy to this electron.  

– From energy conservation: 

Ee=E-EN=h -Ib 

Where Ib=Nucleus binding energy  

– E depends strongly on Z 

 

E dependence for Eγ > mec
2 

 

 

 

 

 

 

Effect is large for K-shell electrons or 

when Eγ≈ K-shell energy 

Eγ dependence for I0 < Eγ < mec
2 

 



Best known electromagnetic process 

(Klein–Nishina formula) 

– for Eλ << mec
2 

 

 

 

 

– for Eλ >> mec
2 

 

 

 

 

 

where 
 

 

 

Compton scattering 

s c µsTh(1-e)

s c µ
lne

e
Z

e µ
El

mec
2
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θ 

¢l - l =
h

mec
1- cosq( )

s Th =
8p

3re
2

= 0.66 barn



Compton scattering 

e µ
El

mec
2

Te = Eg - ¢Eg = Eg

e(1-cosq)

1+ 2e

Tmax = Eg

2e

1+ 2e

DE = Eg -Tmax = Eg

1

1+ 2e
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¢Eg =
Eg

1+e(1- cosq )

From E and p conservation get the energy of the scattered photon 

Kinetic energy of the outgoing electron: 

 

The max. electron recoil is for θ=π 

Transfer of complete γ-energy                                         

via Compton scattering not possible 



Pair production 

Eg ³ 2mec
2 +

2mec
2

MNuleus

γ+Nucleuse+e- + nucleus’ 

γ + e−  e+ + e− + e− 
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At E>100 MeV, electrons lose their 

energy almost exclusively by 

bremsstrahlung while the main 

interaction process for photons is 

electron–positron pair production. 

 

 

 

 

 

Minimum energy required for this 

process 2 me + Energy transferred to the 

nucleus 

 

 



Pair production 

s pair = 4are
2Z 2 7

9
ln

183

Z1/3
-

1

54

æ

è
ç

ö

ø
÷ [cm2 /atom]

X0 =
A

4pNAZ
2re

2 ln
183

Z1/3

s pair =
7

9

NA

A

1

X0
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If Eλ >> mec
2 

Using as for Bremsstrahlung the radiation length 



Interaction of photons with matter 
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Rayleigh Scattering (γA ➛ γA; A = atom; coherent) 

Thomson Scattering (γe ➛ γe; elastic scattering) 

Photo Nuclear Absorption (γΚ ➛ pK/nK) 

Nuclear Resonance Scattering (γK ➛ K* ➛ γK) 

Delbruck Scattering (γK ➛ γK) 

Hadron Pair production (γK ➛ h+h– K) 



Energy loss by photon emission 

Emission of Cherenkov light 

Emission of transition radiation 
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Cherenkov photon emission 

The threshold velocity is βc = 1/n  

At velocity below βc no light is emitted 

vp/c > c/n(λ)  vp/c < c/n(λ)  

Symmetric 

dipoles 

 coherent 

wavefront 
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Cherenkov angle 

cosqc =
1

n(l)b

If the velocity of a particle is such that β = vp/c > c/n(λ) where n(λ) is the 

index of refraction of the material, a pulse of light is emitted around the 

particle direction with an opening angle (θc ) 

 

θ 



Cherenkov photon 

emission 
Cherenkov emission is a weak effect and 

causes no significant energy loss (<1%) 

It takes place only if the track L of the particle in 

the radiating medium is longer than the 

wavelength λ  of the radiated photons.  

Typically O(1-2 keV / cm) or O(100-200) visible 

photons / cm 

Cherenkov radiation 

glowing in the core of 

a reactor 
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Cherenkov radiators 

Silica Aerogel 

Material          n-1        βc       θc photons/cm 
solid natrium  3.22 0.24 76.3 462 

Lead sulfite 2.91 0.26 75.2 457 

Diamond  1.42 0.41 65.6 406 

Zinc sulfite 1.37 0.42 65 402 

silver chloride 1.07 0.48 61.1 376 

Flint glass  0.92 0.52 58.6 357 

Lead crystal 0.67 0.6 53.2 314 

Plexiglass  0.48 0.66 47.5 261 

Water 0.33 0.75 41.2 213 

Aerogel  0.075 0.93 21.5 66 

Pentan  1.70E-03 0.9983 6.7 7 

Air  2.90E-03 0.9997 1.38 0.3 

He 3.30E-05 0.999971 0.46 0.03 
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Cherenkov photon emission 

d2N

dldx
=

2paz2

l2
1-

1

b 2n2(l)

æ

è
ç

ö

ø
÷ =

2paz2

l2
sin2 qc

d2N

dx
= dl

350nm

550nm

ò
dN

dldx
= 475z2 sinqc photons/cm
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Note the wavelength dependence ~ 1/ 2 

The index of refraction n is a function of photon energy E=h ,  as is the 

sensitivity of the transducer used to detect the light. 

Therefore to get the number of photon we must integrate over the 

sensitivity range: 

 

 

The number of Cherenkov photons produced by unit path length by 

a charged particle of charge z is 

 

 

 

 



Threshold Cherenkov Counter 

Combination 

n2:   k and   >1/n2 and p<1/n2  
n1:   π >1/n1 and p, k and <1/n1  
 
 

Combination of several threshold Cherenkov counters 

Separate different particles by choosing radiator such that 

 

• Light in C1 and C2 identifies a pion 

• Light in C2 and not C1 identifies a Kaon 

• Light in neither C1 and C2 identifies a proton 

•  K-p-π separation up to 100 GeV 
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Transition radiation 
Transition radiation occurs if a relativist particle (large γ) passes the 

boundary between two media with different refraction indices (n1≠n2) 

[predicted by Ginzburg and Frank 1946; experimental confirmation 70ies] 

Effect can be explained by 

re-arrangement of electric 

field 

A charged particle 

approaching a boundary 

creates a dipole with its 

mirror charge 

The time-dependent dipole field causes the 

emission of electromagnetic radiation 
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S =
1

3
az2g wP ( wP » 28.8

Zr

A
eV )



Transition Radiation 

Typical emission angle: θ=1/ 

Energy of radiated photons: ~  

Number of radiated photons: αz2 

Effective threshold: γ > 1000 

Use stacked assemblies of low Z material with many transitions and a 

detector with high Z 

Note: Only X-ray 

(E>20keV) 

photons 

can traverse the 

many radiators 

without being 

absorbed 

Slow signal 

Fast signal 
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Transition radiation detector 

(ATLAS) 
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BACKUP information 
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dE

dx
µ
Z 2

b 2
ln ab 2g 2( )

Energy loss by ionization 

First calculate for Mc2 ≫ mec
2 : 

Energy loss for heavy charged particle [dE/dx for electrons 

more complex] 

The trajectory of the charged particle is unchanged after 

scattering 

a= material dependent 

41 
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Bohr’s Classical Derivation 
Particle with charge Ze and velocity v moves 

through a medium with electron density n. 

Electrons considered free and initially at rest 

The momentum transferred to the electron is: 

Gauss'Law: E^ò 2pb( )dx = 4p (ze)

E^ò dx =
4ze

b

Dp^ =
2ze2

bv

Dp ^= F̂ò dt = F̂ò
dt

dx
dx = F̂ò

dx

v

Dp ||: averages to zero because of symmetry

F̂ = eE^

Dp^ = e E^ò
dx

v
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1913 



Bohr’s Classical Derivation 

DE(b) =
Dp2

2me
Dp^ =

2ze2

bv

Diverges for b0. Integrate in [bmin, bmax]
 

-dE(b) =
Dp2

2me
2pnbdbdx =

2ze2( )
2

2me bv( )
2

2pnbdbdx =
4pnz2e4

mev
2

db

b
dx
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D. Bortoletto 

Lecture 2 

Consider Cylindric barrel: Ne=n(2πb)⋅db dx 

Energy loss per path length dx for distance between b and b+db in 

medium with electron density n: 

Energy transfer to a single electron 

with an impact parameter b 

Energy loss 

-
dE

dx
=

4pnz2e4

mev
2

db

bbmin

bmax

ò =
4pnz2e4

mev
2

ln
bmax

bmin



Bohr’s Classical Derivation 
Determination of relevant range [bmin, bmax]: 

[Arguments: bmin > λe, i.e. de Broglie wavelength; bmax < ∞ due to 

screening ...] 
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bmin = le =
h

p
=

2p

gmev

bmin =
gv

ve
g =

1

1- b 2

-
dE

dx
=

4pnz2e4

mec
2b 2

n ln
mec

2b 2g

2p ve

Deviates by factor 2 

from QM derivation 

Electron density n=NA⋅ρ⋅Z/A 

Effective Ionization potential I=h <νe> 



Bohr Calculation of dE/dx 

Wmax =
1

2
g 2me(2v)

2 = 2mec
2b 2g 2 bmin =

ze2

gmev
2

bmax =
gv

ve

or distance at which the kinetic energy transferred is 

minimum Wmin= I (mean ionization potential) 

-
dE

dx
=

4pNez
2re

2mec
2

b 2
ln
bmax

bmin

-
dE

dx
=

4pNez
2re

2mec
2

b 2
ln

g 2mv3

ze2 ve
=

4pNez
2re

2mec
2

b 2
ln

2mecb
2g 2

I

æ

è
ç

ö

ø
÷

Determination of the relevant range [bmin, bmax]: 

– bmin :  Maximum kinetic energy transferred Bohr formula 

_ bmax :particle moves faster than e in the atomic orbit. Electrons are bound to atoms 

with average orbital frequency <ve>. Interaction time has to be ≤ <1/ve> 

Stopping power 

We can integrate in this interval  an derive the classical Bohr formula 
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Relativistic Kinematic 

Energy conservation: p2c2 +M 2c4 +mc2 = ¢¢p 2c2 +M 2c4 + ¢p 2c2 +m2c4

momentum conservation: p = ¢p cosq + ¢¢p cosf

0 = ¢p sinq + ¢¢p sinf

The maximum energy transfer is 

Using energy and momentum conservation we can find the kinetic energy 

¢¢p 2 = ¢p 2 + p2 -2p ¢p cosq

¢e = ¢p 2c2 +m2c4 -mc2 =
2mc2p2c2 cos2 q

mc2 + p2c2 +M 2c4 - p2c2 cos2 q

¢emax =
2mp2

m2 +M 2 + 2mE / c2

φ 

θ M, P, E m, pe=0 

m, p’, E’ 

M, p’’, E’’ 
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Cherenkov Radiation – Momentum 

Dependence 
Cherenkov angle θ and number of photons N grows with β 

Asymptotic value for β=1: cos θmax = 1/n ; N∞ = x⋅370 / cm (1-1/n2) 
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