
Preliminaries: What You Need To Know

Quantum field theory draws heavily from a number of previous courses, both mathe-

matical and physical. Here I summarize the key concepts that you will need throughout

this course. This will also serve to set conventions and notations. If you’re not com-

fortable with any of these concepts or terms, you should review a suitable book as soon

as possible.

Classical Dynamics

We’ll need both the Lagrangian and Hamiltonian formulation of dynamical systems.

Recall that a physical system is described by coordinates qa, a = 1, . . . , n whose dy-

namics are governed by a Lagrangian L = L(qa, q̇a). The action is defined by

S =

∫ t2

t1

L(qa, q̇a) dt (1.1)

The true path taken by the system is an extremal of the action, i.e. δS = 0. This leads

to the equations of motion,

d

dt

(

∂L

∂q̇a

)

−
∂L

∂qa
= 0 (1.2)

An important result from classical dynamics that will carry over to field theories is

Noether’s theorem. Let’s review this theorem: it states that every continuous symmetry

gives rise to a conserved quantity. Consider an infinitesimal transformation

δqa = Xa(q, q̇, t) (1.3)

This is a symmetry if δL = 0 for all paths1. To prove Noether’s theorem, consider an

arbitrary deformation δqa. Then

δL =

(

∂L

∂qa
δqa +

∂L

∂q̇a
δq̇a

)

=

(

∂L

∂qa
−

d

dt

(

∂L

∂q̇a

))

δqa +
dQ

dt
(1.4)

where

Q =
∂L

∂q̇a
δqa (1.5)

When the equations of motion are obeyed, the term in brackets vanishes and we have

δL = Q̇. Since the symmetry transformation δqa = Xa(q, q̇, t) is defined to have δL = 0,

we learn that when the equations of motion are obeyed, Q = (∂L/∂q̇a)Xa is a conserved

quantity, i.e. Q̇ = 0.

1In fact we can relax this condition and ask only that δL = dF/dt, so that the action remains

unchanged for all paths.
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To move towards the Hamiltonian formalism, we define the momentum pa conjugate

to qa

pa =
∂L

∂q̇a
(1.6)

The Hamiltonian of the system is then defined as

H(q, p) = paq̇a − L (1.7)

where H is to be considered a function of qa and pa rather than qa and q̇a. The equations

of motion are now given by Hamilton’s equations

q̇a =
∂H

∂pa
, ṗa = −

∂H

∂qa
(1.8)

Finally, let us recall the Poisson bracket, an important quantity in classical mechanics

which aids the leap to the quantum theory. For any functions f(q, p) and g(q, p) on

phase space, the Poisson bracket is defined by

{f, g} =
∂f

∂qa

∂g

∂pa
−
∂f

∂pa

∂g

∂qa
(1.9)

In particular, {qa, qb} = {pa, pb} = 0 while {qa, p
b} = δb

a.

Quantum Mechanics

In classical mechanics, the state of a system is determined by a point in phase space,

specified by (qa, p
a). In contrast, in quantum mechanics, the state of a system is

specified by a vector |ψ〉 in Hilbert space. The path from the classical system to

the quantum system proceeds by promoting functions f on phase space to operators

f̂ acting on the Hilbert space. The map between the two system is given by the

relationship between Poisson brackets and commutators,

{ , }classical ↔ −
i

~
[ , ]quantum (1.10)

In particular, we have

[q̂a, q̂b] = [p̂a, p̂b] = 0 and [q̂a, p̂
b] = i~ δb

a (1.11)

This prescription is known as canonical quantization. Note that a generic classical func-

tion f(q, p) does not define a unique quantum operator f̂ due to ordering ambiguities.
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The dynamics of a quantum system is governed by the Hamiltonian operator Ĥ .

There are two different ways of viewing the dynamics. In the Schrödinger picture, the

states |ψ〉 evolve in time, while the operators Ô are time independent. The dynamics

is governed by the Schrödinger equation,

i~
d |ψ〉S
dt

= Ĥ |ψ〉S (1.12)

where the subscript on |ψ〉S reminds us that we’re in the Schrödinger picture. In

contrast, in the Heisenberg picture, the states are time independent, while the operators

now change with time. The relationship between the two is given by

|ψ〉H = eiĤt/~ |ψ〉S (1.13)

ÔH = eiĤt/~ ÔS e
−iĤt/~ (1.14)

and the operators now evolve by

dÔH

dt
=
i

~
[H, ÔH ] (1.15)

Note that ĤS = ĤH ≡ Ĥ . The two pictures are entirely equivalent since all correlation

functions 〈φ| Ô |ψ〉 agree. In quantum field theory we will jump merrily between these

two different pictures. We will also employ a third viewpoint which is something of a

hybrid of the first two, known as the interaction picture.

In this course our notation will differ slightly from that above. Firstly, we will

work in natural units with ~ = 1. Secondly, we will not denote operators with a ĥat;

it should be clear from the context whether we’re talking about classical objects or

quantum objects.

Special Relativity

Minkowski space is parameterized by coordinates xµ = (x0, xi), where µ = 0, 1, 2, 3 and

i = 1, 2, 3. We will often denote x0 as time t, and the spatial three vector xi as ~x.

(On the blackboard, the 3-vector will have a wavy line on the bottom rather than an

arrow on top). We will work in units in which the speed of light is set to c = 1. The

Minkowski metric is then given by

ηµν =













1

−1

−1

−1













= ηµν (1.16)

so that ηµνη
νρ = δρ

µ. We use ηµν (ηµν) to raise (lower) indices on vectors and tensors.
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The relativistic line interval is given by

ds2 = ηµνdx
µdxν = (dx0)2 − d~x · d~x (1.17)

A relativistic particle of mass m traces out a path xµ(s) in Minkowski space. The

4-momentum pµ is defined by

pµ = m
dxµ

ds
(1.18)

which satisfies p2 ≡ pµpµ = ηµν(dx
µ/ds)(dxν/ds) = m2. So writing the 4-momentum

pµ = (E, ~p) in terms of the energy E and the 3-momentum ~p, we arrive at the relativistic

dispersion relationship for a massive particle,

E2 − |~p |2 = m2 (1.19)

We will denote the energy of a particle of mass m and 3-momentum ~p as

E~p =
√

|~p |2 +m2 (1.20)

where we take the +ve square root. This quantity will feature a lot in this course!

Another quantity that features prominently is the scalar product

p · x = ηµνp
µxν = Et− ~p · ~x (1.21)

A note on indices: throughout this course, we will employ the summation convention

in which repeated indices are summed over. For the spacetime indices µ it will be crucial

to keep track of whether they’re up or down: you should never encounter expressions

that look like aµbµ. (For the other indices, such as the a = 1, . . . , n index which appear

on the qa, we don’t need to be as careful, although it’s good practice to try!). Also,

it’s worth stressing that repeated indices are dummy indices – it doesn’t matter what

you call them. But it’s very important that you don’t use the same pairs of dummy

indices twice. For example, the expression (aµbµ)(cµdµ) makes no sense – even with

the brackets! Avoid rampant confusion by writing aµbµ c
νdν to show which pairs are

summed over. Mistakenly denoting multiple pairs of dummy indices with the same

label will be a very easy trap to fall into in this course.

Fourier Transforms

We’ll be frequently changing from position space to momentum space using the Fourier

transform. As always, we have to decide where the factors of 2π sit. Our convention

will be

f(x) =

∫

dnk

(2π)n
f̃(k) eik·x (1.22)

– 4 –



so that the inverse reads

f̃(k) =

∫

dnx f(x) e−ik·x (1.23)

There’s now no excuse for losing track of factors of 2π: they always accompany momen-

tum integrals, never position integrals. Remember also that if we’re doing a Fourier

transform over spacetime (as opposed to just space) then k · x = k0x0 − ~k · ~x.

Dirac Delta Functions

The Dirac delta function is defined by δ(x) = 0 for all x 6= 0 and

∫ +∞

−∞

dx δ(x) = 1 (1.24)

The Fourier transform of the delta-function provides a useful representation that we

will make extensive use of:

δ(x) =

∫ +∞

−∞

dk

2π
eikx (1.25)

In an n-dimensional space, the delta-function is given by

δ(n)(x) =

∫

dnk

(2π)n
eik·x (1.26)

Complex Functions

There are a few places in the course where we’ll need to make use of the properties of

complex functions. In particular, we’ll need the residue theorem. Let Γ be a positively

oriented (i.e. anticlockwise) simple closed contour within (and on) which a function

f(z) is analytic except for a finite number of singular points z1, . . . , zn in the interior

of Γ. Then
∮

Γ

f(z)dz = 2πi
n

∑

i=1

bi (1.27)

where bi is the residue of f(z) at the singular point zi. The residue of a function with

an isolated singular point z0 is defined as the coefficient c1 of the Laurent expansion of

f(z) about z0,

f(z) =
∞

∑

n=0

(z − z0)
n +

c1
z − z0

+
c2

(z − z0)2
+ . . . (1.28)

for 0 < |z − z0| < R, the radius of convergence.
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