Why is supersymmetry interesting?

Higgs field affected by quantum fluctuations of the vacuum

virtual particles increase the density of the Higgs field in the vacuum: \( M_W \uparrow \)

virtual sparticles decrease the density of the Higgs field in the vacuum: \( M_W \downarrow\)

total effect \( = 0 \)

\[ M_W, M_Z \rightarrow E_{\text{max}} \]

The magic of symmetry!

Supersymmetry gives the justification for an apparently miraculous coincidence
If the particle world took place in superspace...

... lots of new particles, but the power of symmetry relates all their properties

Staring at shadows can be deceitful...
Supersymmetry cannot be an exact symmetry of our world (spin-0 electrons do not exist)

The dark side of the moon is hidden

We need the LHC!
gauge symmetry $\Rightarrow m = 0$

supersymmetry $\Rightarrow \tilde{m} = 0$

With spontaneously broken symmetry, mass relations implied by exact symmetry can be modified

Equations invariant under exchange

$\Rightarrow$ solutions with $M_u = M_d$

or solutions with $M_u > M_d$ possible,

as long as $M_d > M_u$ also exists
SU(3) gauge

W, Z

Yukawa

q, l

Squarks, sleptons, gauginos, higgsinos
How will the LHC detect supersymmetry?

R-parity

LSP: neutralino ($\tilde{\gamma}$, $\tilde{Z}$, $\tilde{H}$)

\[ \rightarrow E_T \]
<table>
<thead>
<tr>
<th>Model</th>
<th>e, μ, τ, γ</th>
<th>Jets</th>
<th>E_{\text{miss}}^{T}</th>
<th>|L dt|_{\text{fb}^{-1}}</th>
<th>Mass limit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSUGRA/CMSSSM</td>
<td>1 e, μ</td>
<td>3-6 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>1.2 TeV</td>
<td>ATLAS-CONF-2013-062</td>
</tr>
<tr>
<td>b → b(1060) \to \ell 3 \nu  \gamma</td>
<td>0</td>
<td>1</td>
<td>Yes</td>
<td>20.3</td>
<td>1.1 TeV</td>
<td>ATLAS-CONF-2013-054</td>
</tr>
<tr>
<td>q \to q(1000) \to \ell q \nu</td>
<td>0</td>
<td>2-6 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>740 GeV</td>
<td>ATLAS-CONF-2013-047</td>
</tr>
<tr>
<td>GMSB (NLSP)</td>
<td>2 e, μ</td>
<td>2-4 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>1.3 TeV</td>
<td>ATLAS-CONF-2013-047</td>
</tr>
<tr>
<td>GMSB (NLSP)</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
<td>20.3</td>
<td>1.3 TeV</td>
<td>ATLAS-CONF-2013-047</td>
</tr>
<tr>
<td>GMSB (NLSP)</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
<td>20.3</td>
<td>1.3 TeV</td>
<td>ATLAS-CONF-2013-047</td>
</tr>
<tr>
<td>GMSB (NLSP)</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
<td>20.3</td>
<td>1.3 TeV</td>
<td>ATLAS-CONF-2013-047</td>
</tr>
</tbody>
</table>
| *Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1\sigma theoretical signal cross section uncertainty.*
What about the Higgs boson in supersymmetry?

In SM: \[ H = \begin{pmatrix} h^0 + iG^0 \\ G^+ \end{pmatrix} \quad V = \lambda \left( |H|^2 - v^2 \right)^2 \]

In SUSY: \[ H_1 = \begin{pmatrix} h^0 + iG^0 \\ G^+ \end{pmatrix} \quad H_2 = \begin{pmatrix} H^0 + iA^0 \\ H^+ \end{pmatrix} \]

\[ V = m_1^2 |H_1^0|^2 + m_2^2 |H_2^0|^2 - m_3^2 (H_1^0 H_2^0 + \text{h.c.}) + \frac{g_2^2 + g_Y^2}{8} (|H_1^0|^2 - |H_2^0|^2)^2 \]

8 degrees of freedom - 3 Goldstones = 5 degrees of freedom

2 scalars \((h^0, H^0)\), 1 pseudoscalar \((A^0)\), 1 charged \((H^\pm)\)

3 parameters \((m_{1,2,3}^2)\) - \(M_Z\) = 2 free parameters
Susy Higgs couplings deviate from SM prediction
In spite of our successes, we are still in the dark...

We still have to discover 96% of the universe!

Maybe supersymmetric particles are all around us at this very moment...
If a stable massive particle is in thermal equilibrium in the early universe, its density today can be computed.

\[
T \gg M \\
T \approx M \\
T \ll M
\]

\[
\sigma = \frac{k}{128 \pi M^2} \quad \Rightarrow \quad \Omega_{DM} = 0.22 \left( \frac{M}{\sqrt{k \text{ TeV}}} \right)^2
\]

Peculiar coincidence with the weak scale: is dark matter made of supersymmetric particles? Because of R-parity, LSP can behave as DM.
Several LSP per liter of space (moving at one million km/h)

Half a kg of them in the space occupied by the earth

Power generated by DM on one kg of matter: $10^{-19}$ watts $\Rightarrow$ 1% of the moon for one light bulb

LHC could artificially produce DM

Dark matter: $6 \times 10^{24}$ kg

LHC could artificially produce DM
Complementarity of information

LHC

DM

Direct detection

Indirect detection
Supersymmetry and unification

SM based on a symmetry principle: \( SU(3) \times SU(2) \times U(1) \)

Grand unification: single force \( \rightarrow \) single coupling
Classical physics: force depends on distance
Quantum physics: charge depends on distance

A strange phenomenon
QED: virtual particles screen the charge ➔
charge gets weaker as we move away

Even stranger
QCD: virtual particles antiscreen the charge ➔
charge gets stronger as we move away
The screening (and antiscreening) depends on all species of existing particles.

If supersymmetry is discovered, it could hint towards unification of forces at $10^{16}$ GeV.
CONCLUSIONS

It is fascinating to speculate about the properties of matter and the physical laws at less than $10^{-19}$ m.

It is exciting to live in the age in which this unknown and strange space is explored by experiments.
If you have any questions:
G.F. Giudice
CERN-TH, room 4-2.056
phone: 022 767 3203
e-mail: gian.giudice@cern.ch

If you want to know more: